
IDL Version 5.5
August, 2001 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

What’s New
in IDL 5.5

0801IDL55WN

Restricted Rights Notice
The IDL® software program and the accompanying procedures, functions, and documentation
described herein are sold under license agreement. Their use, duplication, and disclosure are sub-
ject to the restrictions stated in the license agreement. Research Systems, Inc., reserves the right to
make changes to this document at any time and without notice.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of the soft-
ware, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages suffered
by the Licensee or any others resulting from use of the IDL software package or its documentation.

Permission to Reproduce this Manual
If you are a licensed user of this product, Research Systems, Inc. grants you a limited, nontransfer-
able license to reproduce this particular document provided such copies are for your use only and
are not sold or distributed to third parties. All such copies must contain the title page and this
notice page in their entirety.

Acknowledgments
IDL® is a registered trademark of Research Systems Inc., registered in the United States Patent and Trademark Office, for the com-
puter program described herein. Software ≡ Vision™ is a trademark of Research Systems, Inc.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Library
Copyright © 1999
National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are retained by Ston-
eTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publishing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLV, Inc., 1991-1998.

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters into a license agreement
with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For information concerning licensing, please contact: Unisys
Corporation, Welch Licensing Department - C1SW19, Township Line & Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424.

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents
Chapter 1:
Overview of New Features in IDL 5.5 ... 11
Visualization Enhancements ... 12

High-Resolution Textures Supported by IDLgrSurface ... 12
New Enhancements to XOBJVIEW ... 13

New XOBJVIEW_ROTATE Procedure .. 13
New XOBJVIEW_WRITE_IMAGE Procedure .. 13

New Procedure for Generating Tetrahedral Data ... 13
New Support for Region Growing .. 14

New XROI Functionality .. 14
New TrueColor Support for Any Depth on UNIX ... 14

New Support for Resolving Stitching Artifacts in Object Graphics 16
New QUIET Keyword for RECON3 .. 19

New Keyword for Smoother Results Using WARP_TRI .. 19
What’s New in IDL 5.5 3

4

Analysis Enhancements ... 20
The IDL Thread Pool and Multi-Threading .. 20

New Functionality for Gridding and Interpolation .. 21
New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL 21

New REAL_PART Function ... 22
New ERF, ERFC, and ERFCX Functions ... 22

Support for SIMPLEX Method for Linear Programming ... 22
BESELI, BESELJ, BESELK and BESELY Functionality Improvements 22

New NaN Support for SMOOTH and CONVOL ... 22
New LNORM Keyword for COND and NORM .. 23

New DOUBLE Keyword for POLY_AREA .. 23
New STATUS Keyword for POLYWARP Support ... 23

New ACOS, ASIN, ATAN Support for Complex Input ... 23
New Minimum/Maximum Operator Support for Complex Data 24

New SMOOTH Function Multidimensional Width Support 24
New Dimension-specific Transforming for FFT ... 25

New Dimension-setting functionality for Arrays .. 25
Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP 25

New Histogram Cumulative Probability Distribution Functionality 26
Language Enhancements ... 27

Maximum String Length Limit Increased for 32-Bit IDL .. 27
New MESSAGE Keywords and Message Block Support .. 27

Relaxed Formatted Input/Output Record Length Limits .. 31
New and Enhanced File Handling Routines .. 31

New Functionality Frees Dynamic Resources .. 33
New Ability to Check for Keyword Inheritance Errors .. 33

Enhancements to IDL Path Expansion .. 34
New Support for REFORM-Style Dimension Array .. 35

New DOUBLE Keyword for COMPLEX ... 36
New CENTER Keyword for CONGRID .. 37

New SIGN Keyword for FINITE .. 37
Improvements to Files Created with SAVE .. 37

Improvements to UNIX Filename Expansion ... 38
Pre-IDL 4.0 C Internals Compatibility Library Removed .. 38

User Interface Toolkit Enhancements .. 40
New COM and ActiveX Functionality for IDL .. 40
Contents What’s New in IDL 5.5

5

New Shortcut Menu Widget ... 40
Emulating System Colors in Application Widgets ... 41

New Functionality to Specify Slider Increments in IDL Widgets 43
File Access Enhancements .. 44

New PATH_SEP Function ... 44
Enhanced TIFF Support .. 44

New Support for MrSID ... 47
Development Environment Enhancements ... 48

Improved Project Exporting .. 48
Scientific Data Formats Enhancements ... 49

HDF-EOS Data Output Enhancements ... 49
New HDF Vdata Attribute Routines ... 50

IDL ActiveX Control Enhancements .. 51
IDL DataMiner Enhancements .. 52

Platform Specific Information .. 52
Documentation Enhancements .. 56

Enhanced IDL Utilities .. 57
Enhanced IDL Utilities ... 57

New Keywords/Arguments to Existing IDL Utilities ... 58
New and Enhanced IDL Objects ... 60

New Object Classes .. 60
IDL Object Method Enhancements .. 60

New and Enhanced IDL Routines ... 72
New IDL Routines .. 72

IDL Routine Enhancements .. 80
Updates to Executive Commands ... 120

New and Updated System Variables ... 121
Features Obsoleted .. 122

Obsoleted Routines ... 122
Obsoleted Keywords and Arguments ... 122

Platforms Supported in this Release .. 124

Chapter 2:
Multi-Threading in IDL .. 125
The IDL Thread Pool .. 126

Benefits of the IDL Thread Pool ... 126
What’s New in IDL 5.5 Contents

6

Possible Drawbacks to the Use of the IDL Thread Pool ... 126
Controlling the Thread Pool in IDL ... 128

Using the Initial Settings of the Thread Pool .. 128
Programmatically Controlling the Settings of the Thread Pool 128

Disabling the Thread Pool ... 133
Routines Supporting the Thread Pool .. 134

Chapter 3:
Using COM Objects in IDL ... 137
Introduction to IDL COM Objects ... 138
Skills Required to Use COM Objects .. 139

IDL COM Naming Schemes .. 140
About Obtaining COM Class Identifiers ... 140

Using IDL IDispatch COM Objects .. 142
IDL IDispatch Naming Schemes ... 142

IDispatch Object Creation ... 143
IDispatch Method Dispatching .. 143

IDispatch COM Object Destruction .. 144
IDispatch Property Management ... 144

COM Objects Returning IDispatch Pointers to Other Objects 145
Example: Creating an IDispatch COM Object in IDL .. 145

Using ActiveX Controls in IDL ... 149
ActiveX-based COM Naming Schemes .. 149

ActiveX Control Creation ... 150
ActiveX Control Access and Dispatching ... 150

Freeing Dynamic Resources .. 151
ActiveX Control Destruction ... 151

Example: Embedding an ActiveX Control in IDL .. 152
Access to ActiveX Methods and Properties .. 155

Event Propagation ... 156

Chapter 4:
Using the Shortcut Menu Widget .. 157
Introduction to the Shortcut Menu Widget .. 158

Using WIDGET_DISPLAYCONTEXTMENU ... 159
Creating a Base Widget Shortcut Menu ... 160

Creating a Draw Widget Shortcut Menu ... 162
Contents What’s New in IDL 5.5

7

Creating a List Widget Shortcut Menu .. 166
Creating a Text Widget Shortcut Menu .. 170

Chapter 5:
New Objects ... 175
IDLcomIDispatch .. 176

IDLcomIDispatch::Init .. 177

IDLcomIDispatch::GetProperty .. 179
IDLcomIDispatch::SetProperty .. 180

IDLffMrSID .. 181
IDLffMrSID::Cleanup .. 182

IDLffMrSID::GetDimsAtLevel .. 183
IDLffMrSID::GetImageData .. 185

IDLffMrSID::GetProperty .. 188
IDLffMrSID::Init .. 191

Chapter 6:
New IDL Routines .. 193
CPU ... 194
DEFINE_MSGBLK .. 197

DEFINE_MSGBLK_FROM_FILE .. 200
ERF .. 203

ERFC ... 204
ERFCX .. 205

FILE_INFO ... 206
FILE_SEARCH ... 210

GRID_INPUT ... 224
GRIDDATA .. 228

HDF_VD_ATTRFIND ... 253
HDF_VD_ATTRINFO ... 254

HDF_VD_ATTRSET .. 256
HDF_VD_ISATTR ... 262

HDF_VD_NATTRS .. 263
HEAP_FREE ... 264

INTERVAL_VOLUME .. 267
PATH_SEP .. 270

QGRID3 .. 271
What’s New in IDL 5.5 Contents

8

QHULL .. 276
QUERY_MRSID ... 279

READ_MRSID .. 281
REAL_PART ... 283

REGION_GROW .. 284
SIMPLEX .. 287

WIDGET_ACTIVEX .. 291
WIDGET_DISPLAYCONTEXTMENU .. 298

XOBJVIEW_ROTATE ... 300
XOBJVIEW_WRITE_IMAGE ... 302

XROI .. 303

Chapter 7:
New Examples .. 319
Overview of New Examples .. 320

Mapping an Image Onto a Surface .. 322
Centering an Image Object .. 325

Alpha Blending: Creating a Transparent Image Object ... 328
Working with Mesh Objects and Routines .. 332

Clipping a Mesh .. 333
Decimating a Mesh .. 336

Merging Meshes .. 339
Smoothing a Mesh ... 342

Advanced Meshing: Combining Meshing Routines ... 345
Copying and Printing Objects .. 351

Copying a Plot Display to the Clipboard ... 351
Printing a Plot Display .. 353

Copying an Image Display to the Clipboard ... 355
Printing an Image Display ... 357

Capturing IDL Direct Graphics Displays .. 359
Capturing Direct Graphics Displays on PseudoColor Devices 359

Capturing Direct Graphics Displays on TrueColor Devices 360
Creating and Restoring .sav Files .. 363

Customizing and Saving an ASCII Template ... 363
Saving and Restoring the XROI Utility and Image ROI Data 365

Handling Table Widgets in GUIs .. 368
Contents What’s New in IDL 5.5

9

Finding Straight Lines in Images .. 374
Color Density Contrasting in an Image ... 376

Removing Noise from an Image with FFT ... 379
Using Double and Triple Integration ... 381

Integrating to Determine the Volume Under a Surface (Double Integration) 381
Integrating to Determine the Mass of a Volume (Triple Integration) 382

Obtaining Irregular Grid Intervals ... 385
Calculating Incomplete Beta and Gamma Functions .. 387

Working With Tolerances in the Incomplete Beta Function 387
Working With Iteration Controls in the Incomplete Gamma Function 388

Determining Bessel Function Accuracy .. 390
Analyzing the Bessel Function of the First Kind .. 390

Analyzing the Bessel Function of the Second Kind ... 392
Analyzing the Modified Bessel Function of the First Kind 394

Analyzing the Modified Bessel Function of the Second Kind 396

Index ... 399
What’s New in IDL 5.5 Contents

10
Contents What’s New in IDL 5.5

Chapter 1:

Overview of New
Features in IDL 5.5
This chapter contains the following topics:
Visualization Enhancements 12
Analysis Enhancements 20

Language Enhancements 27
User Interface Toolkit Enhancements 40

Development Environment Enhancements . 48
File Access Enhancements 44

Scientific Data Formats Enhancements 49
IDL DataMiner Enhancements 52

Documentation Enhancements 56
Enhanced IDL Utilities 57

New and Enhanced IDL Objects 60
New and Enhanced IDL Routines 72

New and Updated System Variables 121
Features Obsoleted 122

Platforms Supported in this Release 124
What’s New in IDL 5.5 11

12 Chapter 1: Overview of New Features in IDL 5.5
Visualization Enhancements

The following enhancements have been made in the area of Visualization in the IDL
5.5 release:

• High-Resolution Textures Supported by IDLgrSurface

• New Enhancements to XOBJVIEW

• New XOBJVIEW_ROTATE Procedure

• New XOBJVIEW_WRITE_IMAGE Procedure

• New Procedure for Generating Tetrahedral Data

• New Support for Region Growing

• New XROI Functionality

• New TrueColor Support for Any Depth on UNIX

• New Support for Resolving Stitching Artifacts in Object Graphics

• New QUIET Keyword for RECON3

• New Keyword for Smoother Results Using WARP_TRI

High-Resolution Textures Supported by IDLgrSurface

Different 3D hardware platforms support different maximum texture resolutions. For
example, OpenGL only guarantees that the maximum resolution will be at least 64-
by-64 pixels. This presents a problem if a high pixel resolution image needs to be
mapped onto a 3D surface. Previously, IDL solved this problem by scaling the image
down to the maximum texture size supported by the hardware. This resulted in a loss
of data that was particularly noticeable when zooming in on the surface. In some
cases, magnification of the low-resolution texture resulted in an unrecognizable
image.

IDL 5.5 addresses this problem with the new TEXTURE_HIGHRES keyword to
IDLgrSurface. Using this new keyword tiles multiple textures across the surface and
may also divide the surface geometry to fit the texture tiles. Although IDL tiles the
texture and surface, the original data is unaltered. Use of the TEXTURE_HIGHRES
keyword thus preserves fine detail by allowing a high-resolution image to be mapped
onto a surface.
Visualization Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 13
Note
Because of the way in which high-resolution textures require modified texture
coordinates, if the TEXTURE_COORD keyword is used, TEXTURE_HIGHRES
will be disabled.

New Enhancements to XOBJVIEW

A new JUST_REG keyword has been added to the XOBJVIEW utility in IDL 5.5.
You can set this keyword to indicate that the XOBJVIEW utility should just be
registered and return immediately. This keyword is useful if you want to register
XOBJVIEW before beginning event processing and either:

• your command-processing front-end does not support an active command line,

or

• one or more of the registered widgets requests that XMANAGER block event
processing. (Note that in this case a later call to XMANAGER without the
JUST_REG keyword is necessary to begin blocking.)

Also in IDL 5.5 a new RENDERER keyword has been added to the XOBJVIEW
utility. You can set this keyword to an integer value indicating which graphics
renderer to use when drawing objects in the XOBJVIEW draw window. Valid values
can be given for either platform-native OpenGL or for IDL’s software
implementation.

New XOBJVIEW_ROTATE Procedure

The new XOBJVIEW_ROTATE procedure is used to programmatically rotate the
object currently displayed in XOBJVIEW. For more information about the new
XOBJVIEW_ROTATE procedure, see “XOBJVIEW_ROTATE” in Chapter 6 of this
book.

New XOBJVIEW_WRITE_IMAGE Procedure

The new XOBJVIEW_WRITE_IMAGE procedure is used to write the object
currently displayed in XOBJVIEW to an image file with the specified name and file
format. For more information about the new XOBJVIEW_WRITE_IMAGE
procedure, see “XOBJVIEW_WRITE_IMAGE” in Chapter 6 of this book.

New Procedure for Generating Tetrahedral Data

The new INTERVAL_VOLUME procedure can be used to generate a tetrahedral
mesh from volumetric data. The mesh generated by this procedure spans the portion
What’s New in IDL 5.5 Visualization Enhancements

14 Chapter 1: Overview of New Features in IDL 5.5
of the volume where the volume data samples fall between two constant data values.
This can also be thought of as a mesh constructed to fill the volume between two
isosurfaces where the isosurfaces are drawn at the two supplied constant data values.
For more information about the new INTERVAL_VOLUME procedure, see
“INTERVAL_VOLUME” in Chapter 6 of this book.

New Support for Region Growing

IDL 5.5 now supports region growing, an image processing technique that extends
the boundaries of a specified region to include neighboring pixels that share a
common trait. The new REGION_GROW function takes a given region within an N-
dimensional array and expands the region to include all connected, neighboring
pixels that fall within the specified limits. For more information about the
REGION_GROW function, see “REGION_GROW” in Chapter 6 of this book. The
XROI utility also offers an interactive implementation of REGION_GROW. See
“Growing an ROI” on page 312 for more information.

New XROI Functionality

The XROI utility has been improved in 5.5, offering several new interactive ROI
definition tools including Rectangle and Ellipse drawing tools. Additionally, any ROI
selected in the drawing window can be translated or scaled using the Translate/Scale
tool. XROI also includes the functionality of the new IDL routine, REGION_GROW.
An ROI defined in XROI can be grown to include all neighboring pixels which match
specified threshold conditions. The Region Grow Properties dialog allows you to
precisely control the properties associated with a region growing process. Support for
RGB images has been added to the histogram plot feature and is also a part of the
Region Grow properties dialog, allowing you to select the channel used when
growing a region of an RGB image. For more information about the XROI utility, see
“XROI” in Chapter 6 of this book.

New TrueColor Support for Any Depth on UNIX

In previous releases of IDL, the X Windows device only supported TrueColor with a
visual depth of 24. In IDL 5.5, TrueColor visuals of any depth are now supported.

How IDL Selects a Visual Class

With the new support for TrueColor visuals of any depth, the following is now the
order in which IDL will query the display to find the first available visual class:

1. DirectColor, 24-bit

2. TrueColor, 24-bit
Visualization Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 15
3. TrueColor, 16-bit (on Linux platforms only)

4. PseudoColor, 8-bit, then 4-bit

5. StaticColor, 8-bit, then 4-bit

6. GrayScale, any depth

7. StaticGray, any depth

Setting a Visual Class with the DEVICE Routine

You can manually set the visual class (instead of having IDL determine the visual
class) by using the DEVICE routine to specify the desired visual class and depth
before you create a window. For the TRUE_COLOR keyword, you can now specify
any value (the most common being 15, 16, and 24). For example:

DEVICE, TRUE_COLOR = 16

Setting a Default Visual Class in Your .Xdefaults File

You can set the initial default value of the visual class and color depth by setting
resources in the .Xdefaults file in your home directory. For example, to set the
default visual class to TrueColor and the visual depth to 24, insert the following lines
in your .Xdefaults file:

idl.gr_visual: TrueColor
idl.gr_depth: 24

How Color is Interpreted for a TrueColor Visual

How a color (such as !P.COLOR) is interpreted by IDL (when a TrueColor visual is
being utilized) depends in part upon the decomposed setting for the device.

To retrieve the decomposed setting:

DEVICE, GET_DECOMPOSED = currentDecomposed

To set the decomposed setting:

DEVICE, DECOMPOSED = newDecomposed

If the decomposed value is zero, colors (like !P.COLOR) are interpreted as indices
into IDL's color table. A color should be in the range from 0 to !D.TABLE_SIZE - 1.
The IDL color table contains a red, green, and blue component at a given index; each
of these components is in the range of 0 up to 255.

Note
IDL’s color table does not map directly to a hardware color table for a TrueColor
visual. If IDL’s color table is modified, for example using the LOADCT or TVLCT
What’s New in IDL 5.5 Visualization Enhancements

16 Chapter 1: Overview of New Features in IDL 5.5
routines, then the new color table will only take effect for graphics that are drawn
after it has been modified.

If the decomposed value is non-zero, colors (like !P.COLOR) are interpreted as a
combination of red, green, and blue settings. The least significant 8 bits contain the
red component, the next 8 bits contain the green component, and the most significant
8 bits contain the blue component.

In either case, the most significant bits of each of the resulting red, green, and blue
components are utilized. The number of bits utilized per component depends upon
the red, green, and blue masks for the visual. On UNIX systems, a new field (Bits Per
RGB) has been added to the output from HELP, /DEVICE. This Bits Per RGB field
indicates the amount of bits utilized for each component.

Tip
The UNIX command, xdpyinfo , also provides information about each of the
visuals.

New Support for Resolving Stitching Artifacts in Object
Graphics

In previous releases of IDL, it was very difficult to reduce or remove a common
visual artifact called stitching. Stitching may occur when multiple graphic primitives
are rendered at the same depth, or distance from the eye in view space. If the
primitives overlap each other at the same depth, parts of some of the primitives may
poke through other primitives, creating a stitching effect. These artifacts are caused
by unavoidable rounding in rasterization calculations, Z-buffer limitations and by
different algorithms used to rasterize different primitives.

One of the most common examples of this effect is caused by trying to draw lines "on
top" of a surface, using the same vertex data. Even though the lines may be drawn
last, the surface still pokes through the lines, leaving a stitched appearance. An
attempt to correct the situation by moving the lines up or away from the surface in
world coordinates usually fails because rotating the objects with a trackball or other
mechanism fails to keep the lines above the surface.

In IDL 5.5, this problem has been addressed by allowing the specification of a
DEPTH_OFFSET value that is used to displace polygons away from the eye in view
space as the polygons are rendered. This displacement is applied in the view, after the
model transforms have been applied. If two objects overlap at the same depth, one of
them can be rendered with a non-zero DEPTH_OFFSET to force a separation
between them in view space. For example, if one object is a set of lines, and the other
Visualization Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 17
is a surface, the surface can be rendered with a DEPTH_OFFSET greater than zero to
"push" it back away from the eye and allow the lines to appear without interference
from the surface. Even if the objects are rotated with a model transform, the surface
will always be drawn slightly farther away from the eye. DEPTH_OFFSET has no
effect on the drawing order of objects, and vice-versa.

Note
RSI suggests using this feature to remove stitching artifacts and not as a means for
layering complex scenes with multiple DEPTH_OFFSET values. It is safest to use
only a DEPTH_OFFSET value of 0, the default, and one other non-zero value such
as 1. Many system-level graphics drivers are not consistent in their handling of
DEPTH_OFFSET values, particularly when multiple non-zero values are used. This
can lead to portability problems because one set of DEPTH_OFFSET values may
produce better results on one machine as compared to another. Using IDL's
software renderer will help improve the cross-platform consistency of scenes that
use DEPTH_OFFSET.

The new DEPTH_OFFSET keyword has been added to the following methods:.

As an example, the following program displays a surface. When you run the program,
you can see the “stitching” in the surface.

Object Class Method

IDLgrContour GetProperty

Init

SetProperty

IDLgrPolygon GetProperty

Init

SetProperty

IDLgrSurface GetProperty

Init

SetProperty

Table 1-1: Methods That Support the New DEPTH_OFFSET Keyword
What’s New in IDL 5.5 Visualization Enhancements

18 Chapter 1: Overview of New Features in IDL 5.5
PRO stitch_ex

; Create data.
x = 5.*SIN(10*FINDGEN(37)*!DTOR)
y = 5.*COS(10*FINDGEN(37)*!DTOR)
data = x ## y

; Initialize model to contain surface and
; mesh.
oModel = OBJ_NEW('IDLgrModel')

; Initialize surface object.
oSurface = OBJ_NEW('IDLgrSurface', data, $

STYLE = 2, COLOR = [200, 200, 200])

; Initialize mesh object.
oMesh = OBJ_NEW('IDLgrSurface', data, $

COLOR = [0, 0, 0])

; Add surface and mesh to model.
oModel -> Add, oSurface
oModel -> Add, oMesh

; Rotate model for better initial perspective.
oModel -> Rotate, [-1, 0, 1], 45

; Display model in XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $

TITLE = 'Example of Line Stitching'

END

Now, modify the program to specify the DEPTH_OFFSET keyword. Change the
lines that initialized the surface object:

; Initialize surface object.
oSurface = OBJ_NEW('IDLgrSurface', data, $

STYLE = 2, COLOR = [200, 200, 200], DEPTH_OFFSET = 1)
Visualization Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 19
When you run the example again, you will not see the “stitching”.

New QUIET Keyword for RECON3

A new QUIET keyword has been added to the RECON3 function in IDL 5.5. By
default (QUIET = 0), the RECON3 function outputs an informational message when
the processing of each image has been completed. This keyword, when set, allows
you to suppress the output of this message.

New Keyword for Smoother Results Using WARP_TRI

The new TPS keyword to WARP_TRI uses Thin Plate Spline interpolation. The Thin
Plate Spline interpolation is ideal for modeling functions with complex local
distortions, such as warping functions, which are too complex to be fit with
polynomials.

Figure 1-1: Surface Without the DEPTH_OFFSET Keyword (Left) and Using the
DEPTH_OFFSET Keyword (Right)
What’s New in IDL 5.5 Visualization Enhancements

20 Chapter 1: Overview of New Features in IDL 5.5
Analysis Enhancements

The following enhancements have been made in the area of Analysis in the IDL 5.5
release:

• The IDL Thread Pool and Multi-Threading

• New Functionality for Gridding and Interpolation

• New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL

• New REAL_PART Function

• New ERF, ERFC, and ERFCX Functions

• Support for SIMPLEX Method for Linear Programming

• BESELI, BESELJ, BESELK and BESELY Functionality Improvements

• New NaN Support for SMOOTH and CONVOL

• New LNORM Keyword for COND and NORM

• New DOUBLE Keyword for POLY_AREA

• New STATUS Keyword for POLYWARP Support

• New ACOS, ASIN, ATAN Support for Complex Input

• New Minimum/Maximum Operator Support for Complex Data

• New SMOOTH Function Multidimensional Width Support

• New Dimension-specific Transforming for FFT

• New Dimension-setting functionality for Arrays

• Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP

• New Histogram Cumulative Probability Distribution Functionality

The IDL Thread Pool and Multi-Threading

With this release, IDL for Windows and IDL for UNIX have the ability to use
multiple threads of execution in a user transparent manner when performing some
numeric computations on multi-CPU hardware. This can greatly increase the speed at
which calculations are accomplished on large data sets; however, it can also hinder
analysis time in certain cases. Developers are able to control the default use of multi-
threading by using the !CPU system variable, the new CPU procedure, and the new
multi-threading keywords in each routine supporting multi-threading.
Analysis Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 21
What is Multi-Threading?

On systems equipped with multiple processors, IDL automatically evaluates the
advantages and disadvantages of using the processors in parallel to accomplish the
calculation. Unless otherwise overridden by using the new CPU procedure to change
the new !CPU system variable, IDL may decide to perform calculations using a
thread pool for routines which support this capability. See Chapter 2, “Multi-
Threading in IDL” for a complete description of multi-threading, and a listing of all
routines currently supporting this capability.

Platform Support for Multi-Threading

IDL supports the use of the thread pool on all platforms except AIX and Macintosh.

New Functionality for Gridding and Interpolation

Four new routines have been added to the gridding and interpolation functionality in
this release: GRID_INPUT, GRIDDATA, QGRID3 and QHULL.

• GRID_INPUT preprocesses and sorts two-dimensional scattered data sets, and
removes duplicate points.

• GRIDDATA interpolates data to a regular grid from scattered data values and
locations.

• QGRID3 linearly interpolates dependent variable values to points in a
regularly sampled volume.

• QHULL is used to construct convex hulls, Delaunay triangulations, and
Voronoi diagrams for a set of points two-dimensional or higher.

New Examples Using the AUTO_GLUE Keyword to
CALL_EXTERNAL

The IDL distribution now includes two new examples of how to use the
AUTO_GLUE keyword to the CALL_EXTERNAL function. The AUTO_GLUE
keyword, introduced in IDL 5.4, allows you to easily access routines within other
programming libraries.

Two new examples show how to use AUTO_GLUE to access routines within the
IMSL C Numerical Library. The examples are located in the examples/imsl
directory. This directory also includes a readme.txt text file, which explains how
to use these examples.

These examples are implemented as IDL functions. The first example computes the
Airy function using the Visual Numerics IMSL C Numerical Library. This example is
What’s New in IDL 5.5 Analysis Enhancements

22 Chapter 1: Overview of New Features in IDL 5.5
called IMSL_AIRY and is in the imsl_airy.pro file. The second example
computes the singular value decomposition of an input array using the Visual
Numerics IMSL C Numerical Library. This example is called IMSL_SVDC and is in
the imsl_svdc.pro file.

New REAL_PART Function

The new REAL_PART function returns the real part of its complex-valued argument.
For more information about the new REAL_PART function, see “REAL_PART” in
Chapter 6 of this book.

New ERF, ERFC, and ERFCX Functions

The new ERF, ERFC, and ERFCX functions return the value of the error function,
the complimentary error function, and the scaled complimentary error function,
respectively. For more information about these new functions, see “ERF”, “ERFC”,
and “ERFCX” in Chapter 6 of this book.

Support for SIMPLEX Method for Linear Programming

The new SIMPLEX function uses the simplex method to solve linear programming
problems and is modeled on the simplx routine found in Numerical Recipes. For
more information about the new SIMPLEX function, see “SIMPLEX” in Chapter 6
of this book.

BESELI, BESELJ, BESELK and BESELY Functionality
Improvements

The BESEL functions now accept any order greater than or equal to zero (within
memory limitations), and also return arrays of the correct dimensions.

New NaN Support for SMOOTH and CONVOL

IDL’s CONVOL and SMOOTH functions now support the handling of NaNs.

When using CONVOL and SMOOTH, the new NAN keyword may be set to cause
the routine to check for occurrences of the IEEE floating-point value NaN in the
input data. Elements with this value are treated as missing data, and are ignored when
computing the convolution for neighboring elements. In the Result, missing elements
are replaced by the convolution of all other valid points within the kernel. If all points
within the kernel are missing, then the result at that point is given by the MISSING
keyword.
Analysis Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 23
New LNORM Keyword for COND and NORM

A new LNORM keyword has been added to the COND and NORM functions in IDL
5.5. This keyword allows you choose which norm is used in the computation of the
COND and NORM functions. For NORM with a vector input argument, you can
choose norm, L1 norm, L2 norm, ..., Ln norm where n is any number. The default
for vectors is L2 norm. For COND and NORM with a two-dimensional array input,
you can choose norm (the maximum absolute row sum norm), L1 norm (the
maximum absolute column sum norm), or L2 norm (the spectral norm). The default
for two-dimensional arrays is norm.

New DOUBLE Keyword for POLY_AREA

In IDL 5.5, a new DOUBLE keyword has been added to the POLY_AREA function.
You can set this keyword to force the computation of the POLY_AREA function to
be performed using double-precision arithmetic.

New STATUS Keyword for POLYWARP Support

When calculating polynomial coefficients for 45-degree rotations with POLYWARP
certain inputs may cause singular matrices. This rarely happens with real data, but
does happen with more idealized data (such as squares or regular shapes). In this type
of case, it is very easy to get a failure in the INVERT. In IDL 5.5, a STATUS keyword
has been introduced for feedback on such rare occurrences.

New ACOS, ASIN, ATAN Support for Complex Input

In IDL 5.5, new support has been added allowing complex input to ACOS, ASIN,
and ATAN. Previously, the inverse transcendental functions ACOS and ASIN did not
accept complex input. The ATAN function accepted complex input, Z=X+iY, but
incorrectly converted the complex number into the 2-argument ATAN(y, x) form and
returned a real result. For ATAN, support has been added for input of two complex
arguments.

ATAN Function Support

The ATAN function now computes the complex arctangent for complex input.
Previously, for a complex number Z=X+iY , internally ATAN(Z) would split Z into its
real and imaginary components and compute ATAN(Y, X). IDL code that uses this
undocumented behavior should be changed by replacing calls to ATAN(Z) with
ATAN(IMAGINARY(Z), REAL_PART(Z)).

For example, in IDL 5.4, to compute the argument (or angle) of a complex number:

L∞

L∞

L∞
What’s New in IDL 5.5 Analysis Enhancements

24 Chapter 1: Overview of New Features in IDL 5.5
z = COMPLEX(2, 1)
print, ATAN(z)*180/!PI ; undocumented behavior

IDL prints:

26.5651

Now, in IDL 5.5, to compute the argument:

z = COMPLEX(2, 1)
print, ATAN(IMAGINARY(z), REAL_PART(z))*180/!PI

IDL prints:

26.5651

New Minimum/Maximum Operator Support for Complex Data

Complex data types now work with <, >, LT, LE, GT, and GE operators, utilizing the
absolute value (or modulus) for all comparisons. Behavior is unchanged for EQ and
NE.

New SMOOTH Function Multidimensional Width Support

Since SMOOTH allows n-dimensional input arrays, IDL 5.5 now allows an n-
dimensional smoothing window (the Width input argument can now have more than
one dimension).

Example

This example shows the use of SMOOTH with the new multidimensional width
argument on an RGB image.

; Determine the path to the file.
file = FILEPATH('rose.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Import in the RGB image from the file.
image = READ_IMAGE(file)

; Initialize the image size parameter.
imageSize = SIZE(image, /DIMENSIONS)

; Initialize the display.
DEVICE, DECOMPOSED = 1
WINDOW, 0, XSIZE = imageSize[1], YSIZE = imageSize[2], $

TITLE = 'Original Rose Image'

; Display the original image on the left side.
TV, image, TRUE = 1
Analysis Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 25
; Initialize another display
WINDOW, 1, XSIZE = 3*imageSize[1], YSIZE = imageSize[2], $

TITLE = 'Vertically Smoothed (left), Horizontally ' + $
'Smoothed (middle), and Both (right)'

; Smooth the RGB image in just the width dimension.
smoothed = SMOOTH(image, [1, 1, 21])

; Display the results.
TV, smoothed, 0, TRUE = 1

; Smooth the RGB image in just the height dimension.
smoothed = SMOOTH(image, [1, 21, 1])

; Display the results.
TV, smoothed, 1, TRUE = 1

; Smooth the RGB image in just the width and height dimensions.
smoothed = SMOOTH(image, [1, 5, 5])

; Display the results.
TV, smoothed, 2, TRUE = 1

New Dimension-specific Transforming for FFT

Previously, the FFT function accepted multi-dimensional arguments but did not allow
specification of which dimension to transform, but instead transformed along all
dimensions. Now in IDL 5.5, the new DIMENSION keyword allows you to
transform only along one dimension.

New Dimension-setting functionality for Arrays

The new DIMENSION keyword to the MIN and MAX functions allows you to set
the dimension over which to find the minimum or maximum values (respectively) of
an array of data. If not present or set to zero, the minimum or maximum
(respectively) values are found over the entire array.

Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP

The IDL source code for the CLUSTER, CLUST_WTS, EIGENQL, and PCOMP
routines is now available. They can be accessed in the lib subdirectory of the IDL
distribution in the following files: cluster.pro , clust_wts.pro , eigenql.pro ,
and pcomp.pro .
What’s New in IDL 5.5 Analysis Enhancements

26 Chapter 1: Overview of New Features in IDL 5.5
New Histogram Cumulative Probability Distribution
Functionality

The new FCN keyword to HIST_EQUAL and ADAPT_HIST_EQUAL allow you to
set the resulting histogram’s desired cumulative probability distribution function by
specifying a 256 element vector. If omitted, a linear ramp, which yields equal
probability bins will result. This function is later normalized, so magnitude is not
important, though it should increase monotonically.
Analysis Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 27
Language Enhancements

The following enhancements have been made in the area of Language in the IDL 5.5
release:

• Maximum String Length Limit Increased for 32-Bit IDL

• New MESSAGE Keywords and Message Block Support

• Relaxed Formatted Input/Output Record Length Limits

• New and Enhanced File Handling Routines

• New Functionality Frees Dynamic Resources

• New Ability to Check for Keyword Inheritance Errors

• Enhancements to IDL Path Expansion

• New Support for REFORM-Style Dimension Array

• New DOUBLE Keyword for COMPLEX

• New CENTER Keyword for CONGRID

• New SIGN Keyword for FINITE

• Improvements to Files Created with SAVE

• Improvements to UNIX Filename Expansion

• Pre-IDL 4.0 C Internals Compatibility Library Removed

Maximum String Length Limit Increased for 32-Bit IDL

Prior to IDL 5.5, 32-bit IDL had a maximum string length limit of 64K (65534
characters) while 64-bit IDL allowed strings to be up to 2.1GB (2147483647
characters) in length. With IDL 5.5, this limit has been raised to 2.1GB for both types
of IDL.

New MESSAGE Keywords and Message Block Support

The new message block support in IDL 5.5 allows the MESSAGE routine to issue
any IDL error instead of the single IDL_M_USER_ERR message previously
supported. IDL printf -style formatting is supported, using the printf -style
formatting added to explicit formatting in IDL 5.4. For more information on the
printf -style formatting, see “C printf -Style Quoted String Format Code” on page
187 of the Building IDL Applications manual.
What’s New in IDL 5.5 Language Enhancements

28 Chapter 1: Overview of New Features in IDL 5.5
Two new procedures have been added in IDL 5.5 to further provide message block
support: the DEFINE_MSGBLK and DEFINE_MSGBLK_FROM_FILE
procedures. These new procedures allow the user to define new message blocks
within large applications built on IDL which must manage their own errors. When a
message block is loaded, the messages can be issued to the user-level using the
BLOCK and NAME keywords to the MESSAGE procedure.

The MESSAGE procedure has been changed by implementing three new keywords:
BLOCK, LEVEL, and NAME to allow you to issue any IDL error.

Example Using MESSAGE (Pre-IDL 5.5)

In previous releases of IDL, messages were issued by programs using the MESSAGE
procedure. The following simple program illustrates how this was done.

This program randomly chooses a number between 0 and 10. It outputs that number
to let you know if the messages from your guesses are correct. Then, the program
prompts the user to guess the number. If the user’s guess is lower than the number,
the message “Too Low!” appears in the Output Log. If the user’s guess is higher than
the number, the message “Too High!” appears in the Output Log. And if the user
guesses the number correctly, the message tells the user their guess is correct.

PRO guessANumber
; Derive a number in-between 0 and 10.
number = LONG(10.*RANDOMU(seed, 1))
; Output the number.
PRINT, ''
PRINT, 'The number is ' + STRTRIM(number, 2) + '.'
; Initialize variable as a float-point value outside
; of the 0 to 10 range.
guess = -1.
; Loop over guesses until the correct number is inputed.
WHILE (number[0] NE ROUND(guess)) DO BEGIN
; Prompt user to guess.

PRINT, ''
READ, guess, $

PROMPT = 'Guess a number between 0 and 10: '
; Output whether user is below or above the
; correct number.
PRINT, ''
IF (number[0] GT ROUND(guess)) THEN MESSAGE, $

'Too Low!', /INFORMATIONAL, /NONAME
IF (number[0] LT ROUND(guess)) THEN MESSAGE, $

'Too High!', /INFORMATIONAL, /NONAME
; Loop until correct number is inputed.
ENDWHILE
Language Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 29
; Output correct number.
MESSAGE, STRTRIM(number[0], 2) + ' is the number!', $

/INFORMATIONAL, /NONAME
END

New Message Block Support in IDL 5.5

The same example program in IDL 5.5 can now use the new message block support.
In the two examples that follow, you will see how to use the DEFINE_MSGBLK and
the DEFINE_MSGBLK_FROM_FILE procedures, respectively to improve the guess
a number program.

Message blocks can be defined for an IDL session, or in a main routine of an
application using the DEFINE_MSGBLK procedure. For large message blocks, it
may be easier to maintain a message text file and access it using the
DEFINE_MSGBLK_FROM_FILE procedure.

These examples establish message blocks for the IDL session. The message blocks
are defined from the IDL command line. If you were using either of these procedures
in an application, you would define the message block within the main routine of the
application, instead from the IDL command line.

DEFINE_MSGBLK Example

This example uses the same program as before with a few modifications. For this
example the message block is defined using the DEFINE_MSGBLK procedure
entered at the IDL command line.

The program must first be modified as follows before defining the new message
block as follows.

PRO guessANumber
; Derive a number in-between 0 and 10.
number = LONG(10.*RANDOMU(seed, 1))
; Output the number.
PRINT, ""
PRINT, "The number is " + STRTRIM(number, 2) + "."
; Initialize variable as a float-point value outside
; of the 0 to 10 range.
guess = -1.
; Loop over guesses until the correct number is inputed.
WHILE (number[0] NE ROUND(guess)) DO BEGIN

; Prompt user to guess.
PRINT, ""

READ, guess, $
PROMPT = "Guess a number between 0 and 10: "
; Output whether user is below or above the correct
; number.
What’s New in IDL 5.5 Language Enhancements

30 Chapter 1: Overview of New Features in IDL 5.5
PRINT, ""
IF (number[0] GT ROUND(guess)) THEN MESSAGE, $

BLOCK = "GUESSING", NAME = "GUESS_MSG_LOW", $
/INFORMATIONAL

IF (number[0] LT ROUND(guess)) THEN MESSAGE, $
BLOCK = "GUESSING", NAME = "GUESS_MSG_HIGH", $
/INFORMATIONAL

; Loop until correct number is inputed.
ENDWHILE
; Output correct number.
MESSAGE, STRTRIM(number[0], 2), BLOCK = "GUESSING", $

NAME = "GUESS_MSG_CORRECT", /INFORMATIONAL
END

Now define the message block (named GUESSING) to associate the message “Too
Low!” with the name GUESS_MSG_LOW, the message “Too High!” with the name
GUESS_MSG_HIGH, and the message “%s is the number” with the name
GUESS_MSG_CORRECT by entering the following lines of code at the command
line.

name = ["LOW", "HIGH", "CORRECT"]
format = ["Too Low!", "Too High!", "%s is the number!"]

These names and formats are now used to create the message block using the new
DEFINE_MSGBLK procedure as follows.

DEFINE_MSGBLK, "GUESSING", name, format, PREFIX = "GUESS_MSG_"

The message block has now been established for the remainder of the IDL session.
Now when you run the program, this message block supplies the messages as needed.
Once the message block is defined, it exists for the entire session.

Example Using DEFINE_MSGBLK_FROM_FILE

This example uses the same message block but defines it as a separate message text
file rather than entering it at the IDL command line.

Note
Since the same block of messages is used, exit out of IDL before continuing with
this example.

For this example, create a message text file by opening a new file in a text editor.
Copy and paste the following text into that file:

@IDENT GUESSING
@PREFIX GUESS_MSG_
@ LOW "Too Low!"
@ HIGH "Too High!"
@ CORRECT "%s is the number!"
Language Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 31
Save this file as guessANumber.msg in your IDL working directory.

Start up IDL. At the IDL command line define the message block with the
DEFINE_MSGBLK_FROM_FILE procedure:

DEFINE_MSGBLK_FROM_FILE, "guessANumber.msg"

Now you can run the previous example program to see the messages applied using
the new DEFINE_MSGBLK_FROM_FILE procedure.

Relaxed Formatted Input/Output Record Length Limits

Several IDL record length limits have been relaxed in IDL 5.5.

• The 32K limit for default or explicitly formatted Input/Output has been
removed. Now, the only limit on the length of a line is the maximum length
allowed in an IDL string variable (2.1GB).

• The A format code used to require that the width parameter be in the range
(1 ≤ w ≤ 256). This requirement has been relaxed to (1 ≤ w).

• The A, F, D, E, G, I, O, Z, X, C(), and open parenthesis (format codes all
allow you to specify a repetition count, n, controlling how many times each
format element is processed before moving on to the next format element.
Previous versions of IDL required this repetition count to fall in the range
(1 ≤ n ≤ 32767). This requirement has been relaxed to (1 ≤ n).

• The T, TL, and TR format codes all require a parameter n, that specifies the
column to move to, either directly or as an offset, depending on the format
code used. Previous versions of IDL required that n be in the range
(1 ≤ n ≤ 32767). This requirement has been relaxed to (1 ≤ n).

New and Enhanced File Handling Routines

The following table describes new and enhanced routines in IDL 5.5 that improve
IDL’s ability to perform file handling operations:

New/Enhanced Routine Description

FILE_CHMOD New NOEXPAND_PATH keyword allows you to
use File exactly as specified, without applying the
usual file path expansion.

Table 1-2: New File Handling Routines in IDL 5.5
What’s New in IDL 5.5 Language Enhancements

32 Chapter 1: Overview of New Features in IDL 5.5
FILE_DELETE New NOEXPAND_PATH keyword allows you to
use File exactly as specified, without applying the
usual file path expansion.

FILE_INFO The new FILE_INFO function provides file status
information based on a filename, without opening
the file. This differs from FSTAT because FSTAT
requires the file to be open, and much of the
information FSTAT provides is only relevant for
open files. FILE_INFO returns file access, type, and
size information, and together with FSTAT and
FILE_TEST, provides a complete set of file query
operations in IDL. See “FILE_INFO” in Chapter 6
for more information.

FILE_MKDIR New NOEXPAND_PATH keyword allows you to
use File exactly as specified, without applying the
usual file path expansion.

FILE_SEARCH The new FILE_SEARCH function returns a string
array containing the names of all files matching the
input path specification. Input path specifications
may contain wildcard characters, enabling them to
match multiple files. All matched filenames are
returned in a string array, one file name per array
element. In comparison to the existing FINDFILE
function, FILE_SEARCH is more powerful and
provides full cross-platform compatibility. See
“FILE_SEARCH” in Chapter 6 for more
information.

Note - Research Systems strongly recommends the
FILE_SEARCH function be used rather than the
FINDFILE function. FILE_SEARCH is intended as
a replacement for FINDFILE.

FILE_TEST New NOEXPAND_PATH keyword which allows
you to use File exactly as specified, without
applying the usual file path expansion.

New/Enhanced Routine Description

Table 1-2: New File Handling Routines in IDL 5.5 (Continued)
Language Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 33
New Functionality Frees Dynamic Resources

The HEAP_FREE routine recursively frees all heap variables associated with the
argument which is passed to the routine. This routine will examine the variable data,
traversing arrays and structures, pointer, and object references. When an object value
is encountered, it is released using the OBJ_DESTROY routine. When a pointer
value is encountered, its contents are scanned, freeing any dynamic resources, and
then the pointer itself is released using the PTR_FREE routine.

HEAP_FREE may be used:

• To release the dynamic resources contained in a structure returned from the
GetRecord method of an IDLdbRecordset object.

• To release any dynamic resources associated with an event generated by an
ActiveX control that is embedded in an IDL Widget hierarchy using
Widget_ActiveX().

However, HEAP_FREE does have some disadvantages, see “HEAP_FREE” in
Chapter 6 for more information.

New Ability to Check for Keyword Inheritance Errors

When passing inherited keywords to a routine, the _EXTRA keyword quietly ignores
any keywords not accepted by the routine you are calling. Although this is often the
desired behavior, this can allow incorrect usage to go undetected under some
circumstances. For example, consider the following two routines:

PRO PRINT_HELLO_WORLD, UPCASE = upcase
PRINT, KEYWORD_SET(upcase) ? 'Hello World!' : 'Hello World!'

END

PRO HELLO_WORLD, number, _EXTRA = extra
FOR I = 1, number DO PRINT_HELLO_WORLD, _EXTRA = extra

END

This generally works as desired, but will not report an error for any inherited
keywords that are not understood by the PRINT_HELLO_WORLD procedure. For
example, if you called the HELLO_WORLD procedure using a non-existent
keyword (LOWCASE), the routine would quietly ignore the incorrect usage:

HELLO_WORLD, 2, /LOWCASE

You would receive the results:

Hello World!
What’s New in IDL 5.5 Language Enhancements

34 Chapter 1: Overview of New Features in IDL 5.5
Also, if you called the HELLO_WORLD procedure with the following (notice that
the UPCASE keyword is misspelled):

HELLO_WORLD, 2, /UCASE

You would receive the same results as the previous example since the incorrect
keyword would be quietly ignored.

The new _STRICT_EXTRA keyword restricts the use of keywords not accepted by
the routine you are calling. You can use this keyword to provide error checking. For
example, if you changed the _EXTRA keyword to the _STRICT_EXTRA keyword
in the HELLO_WORLD procedure:

FOR I = 1, number DO PRINT_HELLO_WORLD, _STRICT_EXTRA = extra

and run the example again:

HELLO_WORLD, 2, /UCASE

You would receive the following error message:

% Keyword UCASE not allowed in call to: PRINT_HELLO_WORLD

Enhancements to IDL Path Expansion

The following enhancements have been made to the expansion of the IDL_PATH,
IDL_DLM_PATH, and IDL_HELP_PATH environment variables. IDL expands these
variables when they are translated at startup time.

• Using <IDL_BIN_DIRNAME> — When IDL gets the value of the
IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables,
it replaces any instances of the string <IDL_BIN_DIRNAME> with the name
of the subdirectory within the installed IDL distribution where binaries for the
current system are kept. This feature is useful for distributing packages of
Dynamically Loadable Modules (DLMs) with support for multiple operating
system and hardware combinations.

For example, on UNIX, assume that you have your DLMs installed in
/usr/local/mydlm , with support for each platform in a subdirectory using
the same naming convention that IDL uses for the platform dependant
subdirectories underneath the bin directory of the IDL distribution. The
following line, which might be located in a file executed by your shell when
you log in (your .cshrc or .login file) will add the location of the proper
DLM for your current system to IDL’s !DLM_PATH at startup:

% setenv IDL_DLM_PATH "/usr/local/mydlm/<IDL_BIN_DIRNAME>
:<IDL_DEFAULT>"
Language Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 35
On Windows, you would set the appropriate environment variable, and then
exit and restart IDL to update the path.

• Using <IDL_VERSION_DIRNAME> — When IDL gets the value of the
IDL_PATH, IDL_DLM_PATH, and IDL_HELP_PATH environment variables,
it replaces any instances of the string <IDL_VERSION_DIRNAME> with a
unique name for the IDL version that is currently running. This feature can be
combined with <IDL_BIN_DIRNAME> to easily distribute packages of
DLMs with support for multiple IDL versions, operating systems, and
hardware platforms.

For example, on UNIX, assume that you have your DLMs installed in
/usr/local/mydlm . Within the mydlm subdirectory would be a directory for
each supported version of IDL. Within each of those subdirectories would be a
subdirectory for each operating system and hardware combination supported
by that version of IDL. The following line, which might be located in a file
executed by your shell when you log in (your .cshrc or .login file) will add
the location of the proper DLM for your current system to IDL’s !DLM_PATH
at startup:

% setenv IDL_DLM_PATH
"/usr/local/mydlm/<IDL_VERSION_DIRNAME>/
<IDL_BIN_DIRNAME>:<IDL_DEFAULT>"

On Windows, you would set the appropriate environment variable, and then
exit and restart IDL to update the path.

New Support for REFORM-Style Dimension Array

The REFORM function in IDL allows you to specify the resulting dimensions (the Di
argument) of an array as separate arguments, or as a single array argument containing
the dimensions. For example, if a variable, a, is defined as a 20 x 10 x 5 array:

a = FINDGEN(20, 10, 5)

Then, the following statements are equivalent:

b = REFORM(a, 200, 5)
b = REFORM(a, [200, 5])
What’s New in IDL 5.5 Language Enhancements

36 Chapter 1: Overview of New Features in IDL 5.5
This syntax, which was unique to REFORM, allows code to easily handle data of
arbitrary dimensionality. IDL 5.5 extends this notation to the following routines that
accept dimension arguments:

Note
The SHIFT function accepts shift parameters (Si arguments), and not dimensions
(Di argument), but the syntax is identical.

New DOUBLE Keyword for COMPLEX

A new DOUBLE keyword has been added to the COMPLEX function in IDL 5.5.
You can set this keyword to return a double-precision complex result. This is
equivalent to using the DCOMPLEX function. This keyword is provided as a
programming convenience.

BINDGEN FLTARR REFORM

BYTARR INDGEN REPLICATE

BYTE INTARR SHIFT

CINDGEN L64INDGEN SINDGEN

COMPLEX LINDGEN STRARR

COMPLEXARR LON64ARR UINDGEN

DBLARR LONARR UINT

DCINDGEN LONG UINTARR

DCOMPLEX LONG64 UL64INDGEN

DCOMPLEXARR MAKE_ARRAY ULINDGEN

DINDGEN OBJARR ULON64ARR

DOUBLE PTRARR ULONARR

FINDGEN RANDOMN ULONG

FIX RANDOMU ULONG64

FLOAT REBIN
Language Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 37
New CENTER Keyword for CONGRID

A new CENTER keyword has been added to the CONGRID function in IDL 5.5. If
you set this keyword, the interpolation is shifted so that points in the input and output
arrays are assumed to lie at the midpoint of their coordinates rather than at their
lower-left corner.

New SIGN Keyword for FINITE

A new SIGN keyword has been added to the FINITE function in IDL 5.5. You can
use this keyword with the INFINITY and NAN keywords to determine is an infinite
or NaN value is positive or negative. By default (SIGN = 0), the FINITE function
ignores the sign of infinite and NaN values.

Improvements to Files Created with SAVE

With IDL 5.4, Research Systems released a version of IDL that was 64-bit capable.
The original IDL SAVE/RESTORE format used 32-bit offsets. In order to support 64-
bit memory access, the IDL SAVE/RESTORE file format was modified to allow the
use of 64-bit offsets within the file, while retaining the ability to read old files that use
the 32-bit offsets.

The SAVE command always begins reading any .sav file using 32-bit offsets. If the
64-bit offset command is detected, 64-bit offsets are then used for any subsequent
commands.

• In IDL versions capable of writing large files
(!VERSION.FILE_OFFSET_BITS EQ 64), SAVE writes a special command
at the beginning of the file that switches the format from 32 to 64-bit.

• SAVE always starts reading any .sav file using 32-bit offsets. If it sees the 64-
bit offset command, it switches to 64-bit offsets for any commands following
that one.

This configuration is fully backward compatible, in that any IDL program can read
any .sav file it has created, or by any earlier IDL version. Note however that files
produced in IDL 5.4 using 64-bit offsets are not readable by older versions of IDL.

It has come to our attention that IDL users commonly transfer SAVE/RESTORE data
files written by newer IDL versions to sites where they are restored by older versions
of IDL (that is new files being input by old programs). It is not generally reasonable
to expect this sort of forward compatibility, and it does not fit the usual definition of
backwards compatibility. Research Systems has always strived to maintain this
compatibility. However, in IDL 5.4 this was not the case. The following steps have
What’s New in IDL 5.5 Language Enhancements

38 Chapter 1: Overview of New Features in IDL 5.5
been taken in IDL 5.5 to minimize the problems that have been caused by the IDL 5.4
save format:

• 64-bit offsets encoding has been improved. The .sav files written within IDL
5.5 and subsequently should be readable by any previous version of IDL, if the
file data does not exceed 2.1 GB in length.

• IDL 5.5 and subsequent versions will retain the ability to read the 64-bit offset
files produced by IDL 5.4.x, thus ensuring backwards compatibility.

• The .sav files written within IDL 5.5 or subsequent versions, which contain file
data exceeding 2.1GB in length are not readable by older versions of IDL, but
will be readable by IDL 5.5 and subsequent versions of IDL that have
!VERSION.MEMORY_BITS equal to 64.

• The CONVERT_SR54 procedure, a part of the IDL 5.5 user library, can be
used to convert .sav files written within IDL 5.4 into the newer IDL 5.5 format.
This allows existing data files to become readable by previous IDL versions.
The CONVERT_SR54 procedure is located in the
RSI-Directory/lib/obsolete .

Improvements to UNIX Filename Expansion

IDL for UNIX expands wildcard characters within file names in executive commands
(such as .compile and .run) and in routines that accept file names as arguments (such
as OPEN, FILE_TEST, FILE_INFO, and so on). Previous to IDL 5.5, this expansion
was done by a child process running the C-shell (/bin/csh). Now, this expansion is
done by IDL's internal file searching engine, which is also the heart of the new
FILE_SEARCH function. The wildcard characters accepted remain the same (~, *, ?,
[], {}, and environment variables), and any change should be negligible. However,
expansion of C-shell variables such as $path or $shell are no longer expanded.
Instead, they are treated as environment variables, and since most environments do
not contain lower-case names, they expand to null replacement text. In this case, the
desired effect can usually be obtained by instead using the equivalent environment
variables (for example $SHELL, or $PATH).

Pre-IDL 4.0 C Internals Compatibility Library Removed

The sharable library libobsolete.so (known as libobsolete.a under AIX, and
libobsolete.sl under HP-UX) has been removed from IDL. This library, which first
appeared within IDL 4.0, supplied implementations of the older non-IDL_ prefixed
IDL internal API (application programming interface) written in terms of the API
documented in the IDL External Development Guide.
Language Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 39
Historical Note: IDL 4.0 (released in 1995) offered Callable IDL, which allows IDL
to be called from other compiled programs. From that time, the names of all
externally visible functions and data structures have had a standard IDL_ prefix. This
prevented internal IDL names from conflicting with names in the calling user
program. In order to ease the transition for UNIX and VMS customers with existing
code, a sharable library (libobsolete.so for UNIX, and OBSOLETE.EXE for VMS)
was included in the bin subdirectory that contained an implementation of the old non-
prefixed API written in terms of the new. This code consists largely of functions with
the old names each making a single call to the corresponding function in the IDL
sharable library. It has always been recommended that user code be revised to utilize
the newer supported API instead of the older API. For a time however, the option of
linking against libobsolete has been available during the transition. The amount of
code which relied on this library has never been large, and after six years, any code
that relied on this library should have had ample time to be converted to the new
prefixed API. Therefore, the obsolete library is no longer included in the IDL
distribution. If you have existing code that relies on this library, it is recommended
that it be converted to the supported version of the API, as documented in the
External Development Guide.
What’s New in IDL 5.5 Language Enhancements

40 Chapter 1: Overview of New Features in IDL 5.5
User Interface Toolkit Enhancements

The following enhancements have been made in the area of the User Interface Toolkit
in the IDL 5.5 release:

• New COM and ActiveX Functionality for IDL

• New Shortcut Menu Widget

• Emulating System Colors in Application Widgets

• New Functionality to Specify Slider Increments in IDL Widgets

New COM and ActiveX Functionality for IDL

IDL for Windows now supports the use of COM objects. COM (Component Object
Model) objects, regardless of type or method of creation, are treated as IDL objects.

There are two main uses for COM functionality in IDL:

• Using the IDLcomIDispatch object to instantiate a desired COM object by
using a provided class or program ID. This method is ideal for COM objects
that do not utilize a graphical-user interface.

• Using the WIDGET_ACTIVEX function to embed an ActiveX control in an
IDL widget hierarchy.

The primary differences in IDL between using IDLcomIDispatch-based objects and
using an ActiveX control are the methods by which they are created and managed.
These methods of creation and management as well as more in-depth information on
COM objects are detailed in Chapter 3, “Using COM Objects in IDL”.

New Shortcut Menu Widget

In IDL 5.5 for Windows and IDL 5.5 for UNIX, a shortcut menu widget (otherwise
known as a context sensitive or pop-up menu) has been added to enhance the IDL
widget system. These menus are available for:

• Base widgets

• Text widgets

• Draw widgets

• List widgets
User Interface Toolkit Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 41
An example of a shortcut menu widget is shown in the following figure.

For more information, see Chapter 4, “Using the Shortcut Menu Widget”.

Emulating System Colors in Application Widgets

A new SYSTEM_COLORS keyword has been added to the WIDGET_INFO routine
for the Windows and UNIX operating systems. This new keyword enables an
application developer to determine what colors are used in IDL application widgets
so they can design widgets for their application with the same look and feel as the
supplied IDL widgets.

The WIDGET_SYSTEM_COLORS Structure

When the new SYSTEM_COLORS keyword is used in a WIDGET_INFO call with a
valid IDL widget identifier, an IDL structure is returned. The
WIDGET_SYSTEM_COLORS structure contains 25 fields holding the 3 element
vector values for the corresponding RGB colors. The vector elements range between
0 and 255 or are assigned a value of –1 if unavailable. The field names and meaning
on the Windows and UNIX operating systems are shown in the following table.

Figure 1-2: Shortcut Menu Widget

Field Names Windows Platform UNIX Platform

DARK_SHADOW_3D Dark shadow color for
3D display elements.

N/A

FACE_3D Face color for 3D
display elements and
dialog boxes.

Base background
color for all widgets.

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields
What’s New in IDL 5.5 User Interface Toolkit Enhancements

42 Chapter 1: Overview of New Features in IDL 5.5
LIGHT_EDGE_3D Highlight color for 3D
edges that face the light
source.

Color of top and left
edges of 3D widgets.

LIGHT_3D Light color for 3D
display elements.

Color of highlight
rectangle around
widgets with the
keyboard focus.

SHADOW_3D Color for 3D edges that
face away from the light
source.

Color of bottom and
right edges of 3D
widgets.

ACTIVE_BORDER Active window’s border
color.

Push button
background color
when button is armed.

ACTIVE_CAPTION Active window’s
caption color.

N/A

APP_WORKSPACE Background color of
MDI applications.

N/A

DESKTOP Desktop color. N/A

BUTTON_TEXT Text color on push
buttons.

Widget text color.

CAPTION_TEXT Color of text in caption,
size box, and scroll bar
arrow box.

Widget text color.

GRAY_TEXT Color of disabled text. N/A

HIGHLIGHT Color of item(s)
selected in a widget.

Toggle button fill
color.

HIGHLIGHT_TEXT Color of text of item(s)
selected in a widget.

N/A

INACTIVE_BORDER Inactive window’s
border color.

N/A

Field Names Windows Platform UNIX Platform

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields (Continued)
User Interface Toolkit Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 43
Note
This feature is currently not available on the Macintosh platform.

New Functionality to Specify Slider Increments in IDL
Widgets

The WIDGET_SLIDER and CW_FSLIDER widgets in IDL for Windows and
Macintosh have right and left arrow buttons that increment the sliders. In IDL 5.5,
you may now specify the amount the slider is incremented when the arrow buttons
are pressed. The SCROLL keyword to WIDGET_SLIDER (increments by integer
values) and CW_FSLIDER (increments by floating point/decimal values) now causes
the slider to be incremented by the correct amount each time the slider arrows are
pressed.

INACTIVE_CAPTION Inactive window’s
caption color.

N/A

INACTIVE_CAPTION_TEXT Inactive window’s
caption text color.

N/A

TOOLTIP_BK Background color for
tooltip controls.

N/A

TOOLTIP_TEXT Text color for tooltip
controls.

N/A

MENU Menu background color. N/A

MENU_TEXT Menu text color. N/A

SCROLLBAR Color of scroll bar
“gray” area.

Color of scroll bar
“gray” area.

WINDOW_BK Window background
color.

Base background
color for all widgets.

WINDOW_FRAME Window frame color. Widget border color.

WINDOW_TEXT Text color in windows. Widget text color.

Field Names Windows Platform UNIX Platform

Table 1-3: WIDGET_SYSTEM_COLORS Structure Fields (Continued)
What’s New in IDL 5.5 User Interface Toolkit Enhancements

44 Chapter 1: Overview of New Features in IDL 5.5
File Access Enhancements

The following enhancements have been made in the area of File Access in the IDL
5.5 release:

• New PATH_SEP Function

• Enhanced TIFF Support

• New Support for MrSID

New PATH_SEP Function

The new PATH_SEP function returns the proper segment separator character in the
file path for the current operating system. This is the same character used by the host
operating system for delimiting subdirectory names in a path specification. This new
function enables code to be more flexible and portable as opposed to hardwiring the
separators in the code.

This routine is written in the IDL language. Its source code can be found in the file
path_sep.pro in the lib subdirectory of the IDL distribution.

Enhanced TIFF Support

Enhanced Support for 1-bit and 4-bit TIFF Images

IDL 5.5 now supports reading and writing 1-bit (black and white) and 4-bit TIFF
files. The WRITE_TIFF procedure can write TIFF files with one or more channels,
where each channel can contain 1, 4, 8, 16, or 32-bit integer pixels, or floating-point
values. For black and white images, writing out the image as a 1-bit TIFF will take
approximately 1/8 of the disk space compared to an 8-bit grayscale image. For 4-bit
images (pixel values 0 through 15), writing out the image as a 4-bit TIFF will take
approximately 1/2 the disk space compared to an 8-bit grayscale image.
File Access Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 45
New Returned Information for TIFF Queries

The Info argument to QUERY_TIFF returns an anonymous structure containing
information about the image in the file. In IDL 5.5 the following new QUERY_TIFF
fields have been added:

Field IDL data type Description

BITS_PER_SAMPLE Long This new field indicates the number of
bits per sample or channel. Possible
values are 1, 4, 8, 16, or 32.

ORIENTATION Long This new field indicates image
orientation (by columns and rows):

• 1 = Left to right, top to bottom
(default)

• 2 = Right to left, top to bottom

• 3 = Right to left, bottom to top

• 0 or 4 = Left to right, bottom to top

• 5 = Top to bottom, left to right

• 6 = Top to bottom, right to left

• 7 = Bottom to top, right to left

• 8 = Bottom to top, left to right

PLANAR_CONFIG Long This new field indicates how the
components of each pixel are stored.
Possible values are:

• 0 = Pixel interleaved RGB image or
a two-dimensional image (no
interleaving exists). Pixel
components (such as RGB) are
stored contiguously.

• 2 = Image interleaved. Pixel
components are stored in separate
planes.

Table 1-4: QUERY_TIFF Routine Info Structure Fields
What’s New in IDL 5.5 File Access Enhancements

46 Chapter 1: Overview of New Features in IDL 5.5
Improved TIFF Orientation Functionality

In IDL 5.5, a new ORIENTATION keyword has been added for WRITE_TIFF as
well as for READ_TIFF. The ORIENTATION keyword is set to indicate the
orientation of the image with respect to the columns and rows of Image. This
ORIENTATION keyword replaces the Order argument to WRITE_TIFF and the

PHOTOMETRIC Long This new field indicates the color model
used for the image data. Possible values
are:

• 0 = White is zero

• 1 = Black is zero

• 2 = RGB color model

• 3 = Palette color model

• 4 = Transparency mask

• 5 = Separated (usually CMYK -
cyan-magenta-yellow-black)

RESOLUTION Float array This new field is a two-element vector
[x resolution, y resolution] giving the
number of pixels per resolution unit in
the width and height directions.

UNITS Long This new field is used to indicate the
units of measurement for
RESOLUTION:

• 1 = No units

• 2 = Inches (the default)

• 3 = Centimeters

TILE_SIZE Long array This new field is used for images stored
in separate tiles. This is a two-element
vector [tile width, tile height] giving the
width and height of each tile. For non-
tiled images the TILE_SIZE will contain
[Image width, 1].

Field IDL data type Description

Table 1-4: QUERY_TIFF Routine Info Structure Fields (Continued)
File Access Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 47
ORDER keyword to READ_TIFF which are now both obsolete. Code that uses the
Order argument or ORDER keyword will continue to work as before, but new code
should use the ORIENTATION keyword.

New Unit-setting Functionality for WRITE_TIFF

The new UNITS keyword to WRITE_TIFF can be set to indicate the units of the
XRESOL and YRESOL keywords (which define the horizontal and vertical
resolutions). Possible values are; 1 = No units, 2 = Inches (the default), or
3 = Centimeters.

New Support for MrSID

In IDL 5.5 for Windows, functionality has been added for MrSID. The MrSID
(Multi-Resolution Seamless Image Database) file format is a wavelet compressed,
multi-resolution raster image format. The multi-resolution nature of the format
allows the image to be opened using selective decompression with only the required
portion of an image being opened at once. Using this method, the image may be
viewed at the highest detail while never being fully decompressed. The memory
requirements and time delays associated with opening a full image into memory are
thus avoided, and an image, irrespective of size, may be viewed quickly at any
resolution. IDL 5.5 now provides support for MrSID through use of the IDLffMrSID
object and through the READ_MRSID and QUERY_MRSID methods. The
IDLffMrSID object encapsulates all functionality that is required to access MrSID
files.

For more information on the new IDLffMrSID class, see Chapter 5, “New Objects”.
What’s New in IDL 5.5 File Access Enhancements

48 Chapter 1: Overview of New Features in IDL 5.5
Development Environment Enhancements

Improved Project Exporting

IDL 5.5 for Windows features enhanced project exporting capabilities. The export
feature assists users in packaging up their IDL programs for distribution.

For more information on this feature and how to export and distribute an IDL
application, contact your RSI sales representative.

Figure 1-3: The New Export Files Dialog
Development Environment Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 49
Scientific Data Formats Enhancements

Enhancements have been made to the following Scientific Data Formats in the IDL
5.5 release:

• HDF-EOS Data Output Enhancements

• New HDF Vdata Attribute Routines

HDF-EOS Data Output Enhancements

IDL HDF-EOS routines now consistently handle the array ordering between IDL and
C used by the HDF-EOS library routines. In addition, dimension size vectors and
dimension name lists are also now in IDL order rather than in C order. This was done
so that IDL order is maintained in the reading and writing of data arrays with the
HDF-EOS routines.

Enhanced routines include:

Note
For the EOS_GD_READFIELD, EOS_SW_READFIELD,
EOS_GD_WRITEFIELD, and EOS_SW_WRITEFIELD routines, the START,
STRIDE, and EDGE keywords should also be specified in the IDL dimension order.

EOS_SW_DEFDATAFIELD EOS_GD_DEFFIELD

EOS_SW_DEFGEOFIELD EOS_GD_DEFTILE

EOS_SW_EXTRACTPERIOD EOS_GD_READFIELD

EOS_SW_EXTRACTREGION EOS_GD_READTILE

EOS_SW_PERIODINFO EOS_GD_REGIONINFO

EOS_SW_READFIELD EOS_GD_TILEINFO

EOS_SW_REGIONINFO EOS_GD_WRITEFIELD

EOS_SW_WRITEDATAMETA EOS_GD_WRITEFIELDMETA

EOS_SW_WRITEFIELD EOS_GD_WRITETILE

EOS_SW_WRITEGEOMETA
What’s New in IDL 5.5 Scientific Data Formats Enhancements

50 Chapter 1: Overview of New Features in IDL 5.5
Note
EOS_GD_INQDIMS and EOS_SW_INQDIMS return dimension size and name
information without consideration of order.

Note
Programs written with previous versions of the IDL HDF-EOS routines may have
been created to intentionally compensate for the previous behavior. Due to the
array-handling enhancements in IDL 5.5, this work-around may now generate
incorrect results.

New HDF Vdata Attribute Routines

New IDL versions of the HDF vdata attribute routines have been created. HDF has
seven routines dealing with vdata attributes, whose functionality have been built into
five new IDL routines. Vdata attributes are scalars, vectors or strings and can be
associated with a vdata (like a data table) or with a specific field (column of the table)
in a vdata. These new IDL routines are:

• HDF_VD_ATTRSET - Creates an attribute for a given vdata or vdata/field
pair.

• HDF_VD_ATTRINFO - Gets information about a particular vdata attribute,
including its value(s).

• HDF_VD_ATTRFIND - Returns the attribute index number for a given
attribute name.

• HDF_VD_NATTRS - Returns the number of attributes associated with a vdata
or a vdata/field pair.

• HDF_VD_ISATTR - Indicates whether the specified vdata is being used to
store an attribute (in HDF, HDF structures are used to store internal HDF
information).
Scientific Data Formats Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 51
IDL ActiveX Control Enhancements

IDL 5.5 includes a new version of the IDLDrawX ActiveX control. The control is
now named IDLDrawX3. This control has added a method to allow specification of
IDL_Init options for use in developing external applications.

Why Was a New Version of the Control Created?

One of the features of COM is that interfaces are immutable. That is to say that when
an interface is created you “contractually” agree that the interface won’t change.
Changes require that a new interface (or version) be created. Since the IDL ActiveX
control is a COM object it is bound by this agreement. Because we have made
improvements to the ActiveX control interface by adding new methods and
properties, it was necessary that we create a new ActiveX control with the new
interface.

What Must You Change to Take Advantage of the Control?

If you are a Visual Basic user, you need to add the “IDLDrawX3 ActiveX Control
Module” to your project and remove the “IDLDrawX ActiveX Control Module” or
“IDLDrawX2 ActiveX Control Module” from your project. The source code need not
change.

What About the Previous ActiveX Control?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, it is no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

Why Should You Upgrade?

The new control has a number of new features including printing support, dual
interface control, and new memory improvements. The rest of this section details the
improvements in the new version of the IDL ActiveX control.
What’s New in IDL 5.5 IDL ActiveX Control Enhancements

52 Chapter 1: Overview of New Features in IDL 5.5
IDL DataMiner Enhancements

In IDL 5.5, the ODBC support for IDL DataMiner has been upgraded. This upgrade
affects the following platforms:

• Solaris (Sparc base platforms)

• AIX

• HP-UX

• Windows

• Linux (new platform support), see “Platform Specific Information” for more
information.

Other supported platforms remain at the current level of ODBC support. These
platforms are:

• MacOS

• SGI IRIX

Platform Specific Information

ODBC drivers are installed with IDL if you have selected the IDL DataMiner option.
For more information on installing IDL, see the Installing and Licensing IDL 5.5
manual.

For more information on specific platform requirements, issues, and how to
configure the ODBC driver for use with your database, see the Merant DataDirect
Connect ODBC Reference manual.

• For IRIX and Macintosh, see the 3.11 version of the DataDirect Connect
ODBC Reference manual.

• For all other platforms, see the 3.7 version of the DataDirect Connect ODBC
Reference manual. Both manuals are located in the info/docs/odbc
directory of your product CD-ROM.

The following table describes the drivers that are included with and supported by IDL
DataMiner:
IDL DataMiner Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 53
Note
The following table is for support of ODBC drivers on specific platforms, which
maybe different from support of IDL 5.5 (including IDL DataMiner) on specific
platforms. IDL platform support may supersede the listed OS levels for ODBC
drivers. See “Platforms Supported in this Release” on page 124 for more
information.

Supported
Databases

Driver Name Supported Platforms

INFORMIX 7.x or 9.x INFORMIX 9 Windows 98, Me, NT 4.0, 2000

Sun Solaris 8

AIX 4.3

IRIX 6.5

HP-UX 11

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SuSE Linux 6.4

INFORMIX Dynamic
Server 9.x, 2000

INFORMIX WP Windows 98, Me, NT 4.0, 2000

Sun Solaris 8

HP-UX 11

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SuSE Linux 6.4

Oracle 7.x

(7.x functionality via
SQL*Net 2.x)

Oracle7 Windows 98, Me, NT 4.0, 2000

Solaris 8

AIX 4.3

IRIX 6.5

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SuSE Linux 6.4

Mac OS 8.1

Table 1-5: Supported ODBC Drivers for DataMiner
What’s New in IDL 5.5 IDL DataMiner Enhancements

54 Chapter 1: Overview of New Features in IDL 5.5
Oracle 8.0.5+, 7.3, 8I
(via Net 8 8.0.5+)

Oracle 8 Windows 98, Me, NT 4.0, 2000

Solaris 8

AIX 4.3

HP-UX 11

IRIX 6.5 (requires Oracle N32 Client
Development Kit, Version 8.0.5.0.0
(Oracle Part Number Z24604-02) or
later)

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SuSE Linux 6.4

Mac OS 8.1 (SQL*Net 2.x)

Sybase Adaptive
Server 11.0 +

SybaseASE Windows 98, Me, NT 4.0, 2000

Solaris 8

AIX 4.3

HP-UX 11

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SuSE Linux 6.4

SQL Server 4.9.2 Sybase IRIX 6.5

MacOS 8.1 (System 10 and 11 only)

Sybase System 10.11,
Adaptive Server 11.x,
12.0

Sybase IRIX 6.5

MS SQL Server 6.5,
7.0, 2000

(UNIX support on
SQL Server 2000 is
via 7.0 functionality)

MS_SQLServer7 Windows 98, Me, NT 4.0, 2000

Solaris 8

AIX 4.3

HP-UX 11

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SuSE Linux 6.4

Supported
Databases

Driver Name Supported Platforms

Table 1-5: Supported ODBC Drivers for DataMiner
IDL DataMiner Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 55
Note
For more information on specific platform requirements, issues, and how to
configure the ODBC driver for use with your database, see the Merant DataDirect
Connect ODBC Reference manual. For IRIX and Macintosh, see the 3.11 version of
the DataDirect Connect ODBC Reference manual, for all other platforms, see the
3.7 version of the DataDirect Connect ODBC Reference manual. Both manuals are
located in the /info/docs/odbc directory of your product CD-ROM.

ASCII text files Text Windows 98, Me, NT 4.0, 2000

Solaris 8

AIX 4.3

HP-UX 11

IRIX 6.5

MacOS 8.1

Red Hat Linux 6.2, Caldera
OpenLinux 2.3, SuSE Linux 6.4

Supported
Databases

Driver Name Supported Platforms

Table 1-5: Supported ODBC Drivers for DataMiner
What’s New in IDL 5.5 IDL DataMiner Enhancements

56 Chapter 1: Overview of New Features in IDL 5.5
Documentation Enhancements

Many new examples highlighting a wide range of functionality in IDL have been
added in this release. These examples provide code that can be easily followed and
adapted when developing your own routines using the covered functionality. Areas
that have new examples are:

• Object Graphics

• Language

• Visualization

• Analysis

For more information, see Chapter 7, “New Examples”.
Documentation Enhancements What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 57
Enhanced IDL Utilities

IDL 5.5 now contains utilities that can be used in several ways:

• As stand-alone applications

• As tools for helping you create applications

• Embedded within IDL applications that you develop

All of these utilities are located in the lib/utilities directory and have been
added to your path at install time. Some of these utilities existed in previous versions
of IDL but have been improved.

These utilities may be updated in subsequent IDL releases to take advantage of new
features and technologies.

Enhanced IDL Utilities

The following table lists the IDL utilities. Note that utilities that existed in previous
versions have been listed here since they have moved within the directory structure.

Utility Description

XOBJVIEW The XOBJVIEW_ROTATE and
XOBJVIEW_WRITE_IMAGE procedures, which can
be called only after a call to XOBJVIEW, can be used
to easily create animations of volumes and isosurfaces
displayed in XOBJVIEW. For more information, see
XOBJVIEW_ROTATE and
XOBJVIEW_WRITE_IMAGE.

Table 1-6: Enhanced IDL Utilities
What’s New in IDL 5.5 Enhanced IDL Utilities

58 Chapter 1: Overview of New Features in IDL 5.5
New Keywords/Arguments to Existing IDL Utilities

The following is a list of the new keywords to existing IDL utilities:

XOBJVIEW

Item Description

RENDERER Set this keyword to an integer value indicating which
graphics renderer to use when drawing objects in the
XOBJVIEW draw window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation

By default, your platform’s native OpenGL
implementation is used. If your platform does not have
a native OpenGL implementation, IDL’s software
implementation is used regardless of the value of this
property.

JUST_REG Set this keyword to indicate that the XOBJVIEW
utility should just be registered and return
immediately.

XOFFSET The horizontal offset of the widget in units specified
by the UNITS keyword (pixels are the default) relative
to its parent.

Specifying an offset relative to a row-major or
column-major base widget does not work because
those widgets enforce their own layout policies. This
keyword is primarily of use relative to a plain base
widget. Note that it is best to avoid using this style of
widget layout.
Enhanced IDL Utilities What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 59
XROI

YOFFSET The vertical offset of the widget in units specified by
the UNITS keyword (pixels are the default) relative to
its parent. This offset is specified relative to the upper
left corner of the parent widget.

Specifying an offset relative to a row-major or
column-major base widget does not work because
those widgets enforce their own layout policies. This
keyword is primarily of use relative to a plain base
widget. Note that it is best to avoid using this style of
widget layout.

Keyword/Argument Description

TOOLS The values for the TOOLS keyword indicate the
buttons to be included on an XROI toolbar. New
values to the TOOLS keyword are:

• 'Translate Scale' — Enables translation and
scaling of ROIs. Mouse down on the bounding
box selects a region, mouse motion translates
(repositions) the region. Mouse down on a scale
handle of the bounding box enables scaling
(stretching, enlarging and shrinking) of the region
according to mouse motion. Mouse up finishes
the translation or scaling.

• 'Rectangle' — Enables rectangular ROI drawing.
Mouse down positions one corner of the
rectangle, mouse motions creates the rectangle,
positioning the rectangle’s opposite corner, mouse
up finishes the rectangular region.

• 'Ellipse' — Enables elliptical ROI drawing.
Mouse down positions the center of the ellipse,
mouse motion positions the corner of the ellipse’s
imaginary bounding box, mouse up finishes the
elliptical region.

Item Description
What’s New in IDL 5.5 Enhanced IDL Utilities

60 Chapter 1: Overview of New Features in IDL 5.5
New and Enhanced IDL Objects

This section describes the following:

• New Object Classes

• IDL Object Method Enhancements

New Object Classes

The following table describes the new object classes in IDL 5.5 for Windows.

IDL Object Method Enhancements

The following table describes new and updated keywords and arguments to IDL
object methods.

IDLgrBuffer::Pickdata

New Object Class Description

IDLcomIDispatch Used to create and utilize an IDispatch COM object in
IDL which implements the IDispatch interface.

IDLffMrSID Used to query information about and load image data
from a MrSID (.sid) image file.

Item Description

DIMENSIONS Set this keyword to a two-element array [w, h] to
specify data picking should occur for all device
locations that fall within a pick box of these
dimensions. The pick box will be centered about the
coordinates [x, y] specified in the Location
argument, and will occupy the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/2), y+(h/2))

By default, the pick box covers a single pixel. The
return value of the Pickdata method will match the
dimensions of the pick box. Likewise, the array
returned via the XYZLocation argument will have
dimensions [3, w, h].
New and Enhanced IDL Objects What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 61
IDLgrContour::GetProperty

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFSET has no effect unless the
FILL keyword is set.
What’s New in IDL 5.5 New and Enhanced IDL Objects

62 Chapter 1: Overview of New Features in IDL 5.5
IDLgrContour::Init

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFSET has no effect unless the
FILL keyword is set.
New and Enhanced IDL Objects What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 63
IDLgrContour::SetProperty

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFSET has no effect unless the
FILL keyword is set.
What’s New in IDL 5.5 New and Enhanced IDL Objects

64 Chapter 1: Overview of New Features in IDL 5.5
IDLgrPolygon::GetProperty

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unless the
value of the STYLE keyword is 2 (Filled).
New and Enhanced IDL Objects What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 65
IDLgrPolygon::Init

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unless the
value of the STYLE keyword is 2 (Filled).
What’s New in IDL 5.5 New and Enhanced IDL Objects

66 Chapter 1: Overview of New Features in IDL 5.5
IDLgrPolygon::SetProperty

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unless the
value of the STYLE keyword is 2 (Filled).
New and Enhanced IDL Objects What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 67
IDLgrSurface::GetProperty

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unless the
value of the STYLE keyword is 2 or 6 (Filled or
LegoFilled).
What’s New in IDL 5.5 New and Enhanced IDL Objects

68 Chapter 1: Overview of New Features in IDL 5.5
IDLgrSurface::Init

Enhancement Description

TEXTURE_HIGHRES Set this keyword to cause texture tiling to be used as
necessary to maintain the full pixel resolution of the
original texture image. This is recommended if IDL
is running on modern 3D hardware and resolution
loss due to downscaling becomes problematic. If not
set, and the texture map is larger than the maximum
resolution supported by the 3D hardware, the texture
is scaled down to the maximum resolution supported
by the 3D hardware on your system. The default
value is 0.

Note - Because of the way in which high-resolution
textures require modified texture coordinates, if you
specify the TEXTURE_COORD keyword, high
resolution textures (TEXTURE_HIGHRES) will be
disabled.
New and Enhanced IDL Objects What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 69
DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unless the
value of the STYLE keyword is 2 or 6 (Filled or
LegoFilled).

Enhancement Description
What’s New in IDL 5.5 New and Enhanced IDL Objects

70 Chapter 1: Overview of New Features in IDL 5.5
IDLgrSurface::SetProperty

Item Description

DEPTH_OFFSET An integer value that specifies an offset in depth to
be used when rendering filled primitives. This offset
is applied along the viewing axis, with positive
values moving the primitive away from the viewer.

The units are "Z-Buffer units", where a value of 1 is
used to specify a distance that corresponds to a
single step in the device's Z-Buffer.

Use DEPTH_OFFSET to always cause a filled
primitive to be rendered slightly deeper than other
primitives, independent of model transforms.

This is useful for avoiding stitching artifacts caused
by rendering lines or polygons on top of other
polygons at the same depth.

Note - RSI suggests using this feature to remove
stitching artifacts and not as a means for "layering"
complex scenes with multiple DEPTH_OFFSET
values. It is safest to use only a DEPTH_OFFSET
value of 0, the default, and one other non-zero value
such as 1. Many system-level graphics drivers are
not consistent in their handling of DEPTH_OFFSET
values, particularly when multiple non-zero values
are used. This can lead to portability problems
because one set of DEPTH_OFFSET values may
produce better results on one machine as compared
to another. Using IDL's software renderer will help
improve the cross-platform consistency of scenes
that use DEPTH_OFFSET.

Note - DEPTH_OFFEST has no effect unless the
value of the STYLE keyword is 2 or 6 (Filled or
LegoFilled).
New and Enhanced IDL Objects What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 71
IDLgrWindow::Pickdata

Item Description

DIMENSIONS Set this keyword to a two-element array [w, h] to
specify data picking should occur for all device
locations that fall within a pick box of these
dimensions. The pick box will be centered about the
coordinates [x, y] specified in the Location
argument, and will occupy the rectangle defined by:

(x-(w/2), y-(h/2)) - (x+(w/2), y+(h/2))

By default, the pick box covers a single pixel. The
return value of the Pickdata method will match the
dimensions of the pick box. Likewise, the array
returned via the XYZLocation argument will have
dimensions [3, w, h].
What’s New in IDL 5.5 New and Enhanced IDL Objects

72 Chapter 1: Overview of New Features in IDL 5.5
New and Enhanced IDL Routines

This section describes the following:

• New IDL Routines

• IDL Routine Enhancements

• Updates to Executive Commands

New IDL Routines

The following is a list of new functions, procedures, statements, and executive
commands added to IDL.

New Routine Description

CPU Controls the way IDL uses the system
processor for calculations. The results of
using the CPU procedure are reflected in
the state of the !CPU system variable.

DEFINE_MSGBLK Defines and loads a new message block
into the currently running IDL session.
Once loaded, the MESSAGE procedure
can be used to issue messages from this
block.

DEFINE_MSGBLK_FROM_FILE Reads the definition of a message block
from a file, and uses DEFINE_MSGBLK
to load it into the currently running IDL
session. Once loaded, the MESSAGE
procedure can be used to issue messages
from this block.

ERF Returns the value of the error function.

ERFC Returns the value of the complimentary
error function.

ERFCX Returns the value of the scaled
complimentary error function.

FILE_INFO Returns status information about a
specified file, without opening the file.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 73
FILE_SEARCH Returns a string array containing the
names of all files matching the input path
specification. Input path specifications
may contain wildcard characters,
enabling them to match multiple files.
All matched filenames are returned in a
string array, one file name per array
element.

Note - Research Systems strongly
recommends the FILE_SEARCH
function be used rather than the
FINDFILE function. FILE_SEARCH is
intended as a replacement for
FINDFILE.

GRID_INPUT This new procedure preprocesses and
sorts two-dimensional data sets and
removes duplicate points.

GRIDDATA This new function interpolates data to a
regular grid from scattered data values
and locations using one of several
available interpolation methods.
Computations are preformed in single
precision floating point.

HDF_VD_ATTRFIND This new function returns an attribute's
index number given the name of an
attribute associated with the specified
vdata or vdata/field pair. If the attribute
cannot be located, -1 is returned.

HDF_VD_ATTRINFO This new procedure reads or retrieves
information about a vdata attribute or a
vdata field attribute from the currently
attached HDF vdata structure. If the
attribute is not present, an error message
is printed.

New Routine Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

74 Chapter 1: Overview of New Features in IDL 5.5
HDF_VD_ATTRSET This new procedure writes a vdata
attribute or a vdata field attribute to the
currently attached HDF vdata structure.
If no data type keyword is specified, the
data type of the attribute value is used.

HDF_VD_ISATTR This new function returns TRUE (1) if
the vdata is storing an attribute, FALSE
(0) otherwise. HDF stores attributes as
vdatas, so this routine provides a means
to test whether or not a particular vdata
contains an attribute.

HDF_VD_NATTRS This new function returns the number of
attributes associated with the specified
vdata or vdata/field pair if successful.
Otherwise, -1 is returned.

New Routine Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 75
HEAP_FREE This new routine frees all dynamic
resources associated with the argument
which is passed to the routine. This
routine will traverse the data represented
by the variable, traversing arrays and
structures. When an object value is
encountered, it is released using the
OBJ_DESTROY routine. When a
pointer value is encountered, its contents
are scanned, freeing any dynamic
resources, and then the pointer itself is
released using the PTR_FREE routine.
This is especially helpful with routines
that return dynamically allocated
information.

HEAP_FREE may be used:

• To release the dynamic resources
contained in a structure returned
from the GetRecord method of an
IDLdbRecordset object.

• To release any dynamic resources
associated with an event generated
by an ActiveX control that is
embedded in an IDL Widget
hierarchy using Widget_ActiveX().

However, HEAP_FREE does have some
disadvantages, see “HEAP_FREE” in
Chapter 6 for more information.

New Routine Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

76 Chapter 1: Overview of New Features in IDL 5.5
INTERVAL_VOLUME This new procedure can be used to
generate a tetrahedral mesh from
volumetric data. The mesh generated by
this procedure spans the portion of the
volume where the volume data samples
fall between two constant data values.
This can also be thought of as a mesh
constructed to fill the volume between
two isosurfaces where the isosurfaces are
drawn at the two supplied constant data
values.

PATH_SEP This new function returns the proper file
path segment separator character for the
current operating system.

QGRID3 Linearly interpolates the dependent
variable values to points in a regularly
sampled volume, given a triangulation of
scattered data points in three dimensions,
and the value of a dependent variable for
each point.

QHULL This new function constructs convex
hulls, Delaunay triangulations, and
Voronoi diagrams of a set of points of 2
or more dimensions. It uses and is based
on the program QHULL, which is
described in Barber, Dobkin and
Huhdanpaa, “The Quickhull Algorithm
for Convex Hulls,” ACM Transactions on
Mathematical Software, Vol. 22, No 4,
December 1996, Pages 469-483.

New Routine Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 77
QUERY_MRSID

(Windows only)

This new method allows you to obtain
information about a MrSID image file
without having to import in an image
from the file. This wrapper around the
object interface presents MrSID image
loading in a familiar way to users of the
QUERY_* image routine. However this
function is not as efficient as the object
interface and the object interface should
be used whenever possible.

READ_MRSID

(Windows only)

This new method extracts and returns
image data from a MrSID file at the
specified level and location. This
wrapper around the object interface
presents MrSID image loading in a
familiar way to users of the READ_*
image routine. However this function is
not as efficient as the object interface and
the object interface should be used
whenever possible.

REAL_PART This new function returns the real part of
its complex-valued argument.

New Routine Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

78 Chapter 1: Overview of New Features in IDL 5.5
REGION_GROW This new function performs region
growing for a given region within an N-
dimensional array by expanding the
region to include all connected
neighboring pixels that fall within the
specified limits. The limits are specified
either as a threshold range (a minimum
and maximum pixel value) or as a
multiple of the standard deviation of the
original region pixel values. If the
threshold is used (this is the default), the
region is grown to include all connected
neighboring pixels that fall within the
given threshold range. If the standard
deviation multiple is used, the region is
grown to include all connected
neighboring pixels that fall within the
range of the mean (of the region's pixel
values) plus or minus the given
multiplier times the sample standard
deviation. REGION_GROW returns the
vector of array indices that represent
pixels within the grown region.

SIMPLEX The new SIMPLEX function uses the
simplex method to solve linear
programming problems.

WIDGET_ACTIVEX

(Windows only)

The new WIDGET_ACTIVEX function
creates an ActiveX control in IDL and
places it into an IDL widget hierarchy.

New Routine Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 79
WIDGET_DISPLAYCONTEXTMENU

(Windows, UNIX only)

The new
WIDGET_DISPLAYCONTEXTMENU
function displays a context menu. After
buttons for the context menu have been
created, a context menu can be displayed
using
WIDGET_DISPLAYCONTEXTMENU.
This is normally called in an event
handler that has processed a context
menu event. This procedure takes the ID
of the widget that is the parent of the
context menu, the x and y location to
display the menu, and the ID of the
context menu base.

XOBJVIEW_ROTATE This procedure can be used to
programmatically rotate the object
currently displayed in XOBJVIEW.

XOBJVIEW_WRITE_IMAGE This procedure can be used to write the
object currently displayed in
XOBJVIEW to an image file using the
specified name and file format.

New Routine Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

80 Chapter 1: Overview of New Features in IDL 5.5
IDL Routine Enhancements

The following is a list of new and updated keywords, arguments, and/or return values
to existing IDL routines.

ABS

ACOS

ADAPT_HIST_EQUAL

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The ABS function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Complex Input ACOS now supports complex input.

Thread Pool Keywords

(Windows, UNIX only)

The ACOS function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

FCN Set this keyword to the desired cumulative probability
distribution function in the form of a 256 element
vector. If omitted, a linear ramp, which yields equal
probability bins results. This function is later
normalized, so magnitude is inconsequential, though it
should increase monotonically.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 81
ALOG

ALOG10

ASIN

ATAN

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The ALOG function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The ALOG10 function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Complex Input ASIN now supports complex input.

Thread Pool Keywords

(Windows, UNIX only)

The ASIN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Complex Input ATAN now supports complex input as well as input of
two complex arguments.

Thread Pool Keywords

(Windows, UNIX only)

The ATAN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
What’s New in IDL 5.5 New and Enhanced IDL Routines

82 Chapter 1: Overview of New Features in IDL 5.5
BINDGEN

BREAKPOINT

BYTARR

BYTE

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The BINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

ON_RECOMPILE This new keyword allows you to specify that a
breakpoint will not take effect until the next time the
file containing it is compiled.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The BYTE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 83
BYTEORDER

BYTSCL

CEIL

CINDGEN

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The BYTEORDER function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The BYTSCL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The CEIL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The CINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
What’s New in IDL 5.5 New and Enhanced IDL Routines

84 Chapter 1: Overview of New Features in IDL 5.5
COMPLEX

COMPLEXARR

COND

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

DOUBLE Set this keyword to return a double-precision complex
result. This is equivalent to using the DCOMPLEX
function, and is provided as a programming
convenience.

Thread Pool Keywords

(Windows, UNIX only)

The COMPLEX function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

LNORM Set this keyword to indicate which norm to use for the
computation. The possible values of this keyword are:

• LNORM = 0 Use the norm (the maximum
absolute row sum norm).

• LNORM = 1 Use the L1 norm (the maximum
absolute column sum norm).

• LNORM = 2 Use the L2 norm (the spectral norm).
For LNORM = 2, A cannot be complex.

LNORM is set to 0 by default.

L∞
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 85
CONGRID

CONJ

CONVOL

Item Description

CENTER If this keyword is set, the interpolation is shifted so
that points in the input and output arrays are assumed
to lie at the midpoint of their coordinates rather than at
their lower-left corner.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The CONJ function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

MISSING The value to return for elements that contain no valid
points within the kernel. The default is the IEEE
floating-point value NaN. This keyword is only used if
the NAN keyword is set.

NAN Set this keyword to cause the routine to check for
occurrences of the IEEE floating-point value NaN in
the input data. Elements with the value NaN are
treated as missing data, and are ignored when
computing the convolution for neighboring elements.
In the Result, missing elements are replaced by the
convolution of all other valid points within the kernel.
If all points within the kernel are missing, then the
result at that point is given by the MISSING keyword.
Note that CONVOL should never be called without
the NAN keyword if the input array may possibly
contain NaN values.
What’s New in IDL 5.5 New and Enhanced IDL Routines

86 Chapter 1: Overview of New Features in IDL 5.5
COS

CW_FIELD

CW_FSLIDER

Thread Pool Keywords

(Windows, UNIX only)

The CONVOL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The COS function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

TEXT_FRAME Set this keyword to the width in pixels of a frame to be
drawn around the text field.

This keyword is only a "hint" to the toolkit, and may
be ignored in some instances. Under Microsoft
Windows, text widgets always have a frame of width 1
pixel.

Item Description

DOUBLE Set this keyword to return double-precision values for
the GET_VALUE keyword to WIDGET_CONTROL,
and for the VALUE field in widget events. If
DOUBLE=0 then the GET_VALUE keyword and the
VALUE field will return single-precision values. The
default is /DOUBLE if one of the MINIMUM,
MAXIMUM, or VALUE keywords is double
precision, otherwise the default is DOUBLE=0.

Item Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 87
CW_PDMENU

DBLARR

DCINDGEN

SCROLL Under the Motif window manager, the SCROLL value
specifies how many units the scroll bar should move
when the user clicks the left mouse button inside the
slider area, but not on the slider itself. On Macintosh
and Microsoft Windows, the SCROLL value specifies
how many units the scroll bar should move when the
user clicks the left mouse button on the slider arrows,
but not within the slider area or on the slider itself. The
default SCROLL value is 1% of the slider width.

Item Description

CONTEXT_MENU

(Windows, UNIX only)

Set this new keyword to create a context menu
pulldown. If CONTEXT_MENU is set, Parent must
be the widget ID of a context menu base, and the
return value of CW_PDMENU is this widget ID. Also
see the CONTEXT_MENU keyword to
WIDGET_BASE.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The DCINDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

88 Chapter 1: Overview of New Features in IDL 5.5
DCOMPLEX

DCOMPLEXARR

DEVICE

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The DCOMPLEX function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

LANUAGE_LEVEL Set this keyword to indicate the language level of the
PostScript output that is to be generated by the device.
Valid values include 1 (the default) and 2 (required for
some features, such as filled patterns for polygons).

TRUE_COLOR You can now use this keyword to specify any
TrueColor visual depth. The most common are 15, 16,
and 24.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 89
DINDGEN

DOUBLE

EXP

EXPINT

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The DINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The DOUBLE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The EXP function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The EXPINT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
What’s New in IDL 5.5 New and Enhanced IDL Routines

90 Chapter 1: Overview of New Features in IDL 5.5
FFT

FILE_CHMOD

FILE_DELETE

FILE_MKDIR

Item Description

DIMENSION Set this keyword to the dimension across which to
calculate the FFT. If this keyword is not present or is
zero, then the FFT is computed across all dimensions
of the input array. If this keyword is present, then the
FFT is only calculated only across a single dimension.
For example, if the dimensions of Array are N1, N2,
N3, and DIMENSION is 2, the FFT is calculated only
across the second dimension.

Thread Pool Keywords

(Windows, UNIX only)

The FFT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

NOEXPAND_PATH If specified, FILE_CHMOD uses File exactly as
specified, without applying the usual file path
expansion.

Item Description

NOEXPAND_PATH If specified, FILE_DELETE uses File exactly as
specified, without applying the usual file path
expansion.

Item Description

NOEXPAND_PATH If specified, FILE_MKDIR uses File exactly as
specified, without applying the usual file path
expansion.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 91
FILE_TEST

FINDGEN

FINITE

Item Description

NOEXPAND_PATH If specified, FILE_TEST uses File exactly as
specified, without applying the usual file path
expansion.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The FINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

SIGN If the INFINITY or NAN keyword is set, then set this
keyword to one of the following values:

• SIGN > 0: For /INFINITY, return True (1) if X is
positive infinity, False (0) otherwise. For /NAN,
return True (1) if X is +NaN (negative sign bit is
not set), False (0) otherwise.

• SIGN = 0 (the default): The sign of X (positive or
negative) is ignored.

• SIGN < 0: For /INFINITY, return True (1) if X is
negative infinity, False (0) otherwise. For /NAN,
return True (1) if X is -NaN (negative sign bit is
set), False (0) otherwise.

If neither the INFINITY nor NAN keyword is set, then
this keyword is ignored.
What’s New in IDL 5.5 New and Enhanced IDL Routines

92 Chapter 1: Overview of New Features in IDL 5.5
FIX

FLOAT

FLOOR

Thread Pool Keywords

(Windows, UNIX only)

The FINITE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The FIX function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The FLOAT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The FLOOR function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 93
FLTARR

GAMMA

GAUSSINIT

GAUSSFIT

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The GAMMA function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The GAUSSINIT function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

ESTIMATES The way the estimates are constructed in GAUSSFIT
if not provided by the user has been improved. If the
ESTIMATES array is not specified, estimates are
calculated by first subtracting a polynomial of degree
NTERMS-4 (only if NTERMS is greater than 3) and
then forming a simple estimate of the Gaussian
coefficients.
What’s New in IDL 5.5 New and Enhanced IDL Routines

94 Chapter 1: Overview of New Features in IDL 5.5
GET_DRIVE_LIST

GETENV

Item Description

COUNT This new keyword is named variable into which the
number of drives/volumes found is placed. If no
drives/volumes are found, a value of 0 is returned.

CDROM If set by this new keyword, compact disk drives are
reported. Note that although CDROM devices are
removable, they are treated as a special case, and the
REMOVABLE keyword does not apply to them.

Note - This is a Windows only keyword.

FIXED If set by this new keyword, hard drives physically
attached to the current system are reported.

Note - This is a Windows only keyword.

REMOTE This new keyword specifies that remote (i.e. network)
drives should be reported.

Note - This is a Windows only keyword.

REMOVABLE This new keyword reports removable media devices
(e.g. floppy, zip drive) other than CDROMs.

Note - This is a Windows only keyword.

Item Description

Return Value Returns the equivalence string for Name from the
environment of the IDL process, or a null string if
Name does not exist in the environment. If Name is an
array, the result has the same structure, with each
element containing the equivalence string for the
corresponding element of Name.

Name The string variable for which equivalence strings from
the environment is desired.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 95
HELP

HIST_EQUAL

IMAGINARY

INDGEN

Item Description

DEVICE On UNIX systems, a new field (Bits Per RGB) has
been added to the output from the DEVICE keyword.
This Bits Per RGB field indicates the amount of bits
utilized for each RGB component.

Item Description

FCN Set this keyword to the desired cumulative probability
distribution function in the form of a 256 element
vector. If omitted, a linear ramp, which yields equal
probability bins results. This function is later
normalized, so magnitude is inconsequential, though it
should increase monotonically.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The IMAGINARY function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The INDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
What’s New in IDL 5.5 New and Enhanced IDL Routines

96 Chapter 1: Overview of New Features in IDL 5.5
INTERPOLATE

ISHFT

L64INDGEN

LINDGEN

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The INTERPOLATE function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The ISHFT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The L64INDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The LINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 97
LNGAMMA

LONARR

LONG

LONG64

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The LNGAMMA function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The ERRORF function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The LONG64 function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
What’s New in IDL 5.5 New and Enhanced IDL Routines

98 Chapter 1: Overview of New Features in IDL 5.5
MAKE_ARRAY

MATRIX_MULTIPLY

MAX

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

DIMENSION This modified keyword represents a vector of 1 to 8
elements specifying the dimensions of the result. This
is equivalent to the array form of the Di plain
arguments.

Thread Pool Keywords

(Windows, UNIX only)

The MAKE_ARRAY function supports the new
thread pool keywords. For more information, see
“Multi-Threading Keywords” on page 119 and
Chapter 2, “Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The MATRIX_MULTIPLY function supports the new
thread pool keywords. For more information, see
“Multi-Threading Keywords” on page 119 and
Chapter 2, “Multi-Threading in IDL”.

Item Description

DIMENSION Set this new keyword to the dimension over which to
find the maximum values for an array. If this keyword
is not present or is zero, then the maximum is found
over the entire array. If this keyword is present, then
the return values for Result, Max_Subscript, MIN, and
SUBSCRIPT_MIN will all be arrays of one dimension
less than the input array. For example, if the
dimensions of Array are N1, N2, N3, and
DIMENSION is 2, the dimensions of the result are
(N1, N3), and element (i,j) of the result contains the
maximum value of Array[i, *, j].
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 99
MESH_OBJ

MESSAGE

SUBSCRIPT_MIN A named variable that, if supplied, is converted to an
integer containing the one-dimensional subscript of
the minimum element, the value of which is available
via the MIN keyword.

Thread Pool Keywords

(Windows, UNIX only)

The MAX function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

CLOSED This new keyword, if set, “closes” the polygonal mesh
topologically by using the first vertex in a row for both
the first and last polygons in that row. This keyword
parameter is only applicable to the CYLINDRICAL,
SPHERICAL, REVOLUTION, and EXTRUSION
surface types. This keyword parameter removes the
discontinuity where the mesh wraps back around on
itself, which can improve the mesh's appearance when
viewing it as a shaded object. For the EXTRUSION
surface type, this procedure handles input polygons
that form a closed loop with the last vertex being a
copy of the first vertex, as well as those that do not.

Item Description

BLOCK If specified, BLOCK supplies the name of the message
block to use. The BLOCK keyword is ignored unless
the NAME keyword is also specified.

LEVEL The LEVEL keyword is used to indicate that the name
of a routine further up in the current call chain should
be used instead.

Item Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

100 Chapter 1: Overview of New Features in IDL 5.5
MIN

N_TAGS

NAME If specified, NAME supplies the name of the message
to throw. NAME is often used in conjunction with the
BLOCK keyword.

Item Description

DIMENSION Set this new keyword to the dimension over which to
find the minimum values of an array. If this keyword is
not present or is zero, then the minimum is found over
the entire array. If this keyword is present, then the
return values for Result, Min_Subscript, MAX, and
SUBSCRIPT_MAX will all be arrays of one
dimension less than the input array. For example, if the
dimensions of Array are N1, N2, N3, and
DIMENSION is 2, the dimensions of the result are
(N1, N3), and element (i,j) of the result contains the
minimum value of Array[i, *, j].

SUBSCRIPT_MAX A named variable that, if supplied, is converted to an
integer containing the one-dimensional subscript of
the maximum element, the value of which is available
via the MAX keyword.

Thread Pool Keywords

(Windows, UNIX only)

The MIN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

DATA_LENGTH Set this new keyword to return the length of the data
fields contained within the structure, in bytes. This
differs from LENGTH in that it does not include any
alignment padding required by the structure. The
length of the data for a given structure will be the same
on any system.

Item Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 101
NORM

OBJARR

Item Description

LNORM Set this keyword to indicate which norm to compute.
If A is a vector, then the possible values of this
keyword are:

• LNORM = 0 Compute the norm, defined as
MAX(ABS(A)).

• LNORM = 1 Compute the L1 norm, defined as
TOTAL(ABS(A)).

• LNORM = 2 Compute the L2 norm, defined as
SQRT(TOTAL(ABS(A)^2)).

• LNORM = n Compute the Ln norm, defined as
(TOTAL(ABS(A)^n))^(1/n) where n is any
number, float-point or integer.

LNORM for vectors is set to 2 by default.

If A is a two-dimensional array, then the possible
values of this keyword are:

• LNORM = 0 Compute the norm (the
maximum absolute row sum norm), defined as
MAX(TOTAL(ABS(A), 1)).

• LNORM = 1 Compute the L1 norm (the maximum
absolute column sum norm), defined as
MAX(TOTAL(ABS(A), 2)).

• LNORM = 2 Compute the L2 norm (the spectral
norm) defined as the largest singular value,
computed from SVDC. For LNORM = 2, A
cannot be complex.

LNORM for two-dimensional arrays is set to 0 by
default.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

L∞

L∞
What’s New in IDL 5.5 New and Enhanced IDL Routines

102 Chapter 1: Overview of New Features in IDL 5.5
OPENR, OPENU, OPENW

POLYWARP

POLY_2D

Item Description

NOEXPAND_PATH If specified, File is used exactly as specified, without
applying the usual file path expansion.

Item Description

DOUBLE Set this keyword to use double-precision for
computations and to return a double-precision result.
Set DOUBLE=0 to use single-precision for
computations and to return a single-precision result.
The default is /DOUBLE if any of the inputs are
double precision, otherwise the default is
DOUBLE=0.

STATUS Set this keyword to a named variable to receive the
status of the operation. Possible status values are:

0 = Successful completion.

1 = Singular array (which indicates that the
inversion is invalid).

2 = Warning that a small pivot element was used
and that significant accuracy was probably lost.

Note - If STATUS is not specified, any warning
messages will be output to the screen.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The POLY_2D function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 103
POLY_AREA

PTRARR

QUERY_TIFF

RANDOMN

Item Description

DOUBLE Set this keyword to use double-precision for
computations and to return a double-precision result.
Set DOUBLE = 0 to use single-precision for
computations and to return a single-precision result. If
either of the inputs are double-precision, the default is
/DOUBLE (DOUBLE = 1), otherwise the default is
DOUBLE = 0.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Info The Info argument to QUERY_TIFF returns an
anonymous structure containing information about the
image in the file. New Info structure fields have been
added. See “New Returned Information for TIFF
Queries” on page 45.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.
What’s New in IDL 5.5 New and Enhanced IDL Routines

104 Chapter 1: Overview of New Features in IDL 5.5
RANDOMU

READ_TIFF

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

ORIENTATION Set this keyword to a named variable that will contain
the orientation value from the TIFF file. Possible
return values are:

• 1 = Column 0 represents the left-hand side, and
row 0 represents the top.

• 2 = Column 0 represents the right-hand side, and
row 0 represents the top.

• 3 = Column 0 represents the right-hand side, and
row 0 represents the bottom.

• 0 or 4 = Column 0 represents the left-hand side,
and row 0 represents the bottom.

• 5 = Column 0 represents the top, and row 0
represents the left-hand side.

• 6 = Column 0 represents the top, and row 0
represents the right-hand side.

• 7 = Column 0 represents the bottom, and row 0
represents the right-hand side.

• 8 = Column 0 represents the bottom, and row 0
represents the left-hand side.

If an orientation value does not appear in the TIFF file,
an orientation of 0 is returned.

Return Value READ_TIFF now imports 1- and 4-bit images from
TIFF files. For 1-bit (bi-level) images, the image
values are 0 or 1. For 4-bit grayscale images, the
image values are in the range 0 to 15.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 105
REBIN

RECON3

REFORM

REPLICATE

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

QUIET Set this keyword to suppress the output of
informational messages when the processing of each
image is completed.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The REPLICATE function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
What’s New in IDL 5.5 New and Enhanced IDL Routines

106 Chapter 1: Overview of New Features in IDL 5.5
REPLICATE_INPLACE

ROUND

SETENV

SHIFT

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The REPLICATE_INPLACE function supports the
new thread pool keywords. For more information, see
“Multi-Threading Keywords” on page 119 and
Chapter 2, “Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The ROUND function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Environment_Expression This argument may now be either a scalar or array
string variable containing environment expressions to
be added to the environment.

Item Description

Si This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 107
SIN

SINDGEN

SINH

SMOOTH

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The SIN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The SINH function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

MISSING The value to return for elements that contain no valid
points within the kernel. The default is the IEEE
floating-point value NaN. This keyword is only used if
the NAN keyword is set.
What’s New in IDL 5.5 New and Enhanced IDL Routines

108 Chapter 1: Overview of New Features in IDL 5.5
NAN Set this keyword to cause the routine to check for
occurrences of the IEEE floating-point value NaN in
the input data. Elements with the value NaN are
treated as missing data, and are ignored when
computing the smooth value for neighboring elements.
In the Result, missing elements are replaced by the
smoothed value of all other valid points within the
smoothing window. If all points within the window are
missing, then the result at that point is given by the
MISSING keyword. Note that SMOOTH should never
be called without the NAN keyword if the input array
may possibly contain NaN values.

Width This modified argument defines the width of the
smoothing window. Width can either be a scalar or a
vector with length equal to the number of dimensions
of Array. If Width is a scalar then the same width is
applied for each dimension that has length greater than
1 (dimensions of length 1 are skipped). If Width is a
vector, then each element of Width is used to specify
the smoothing width for each dimension of Array.
Values for Width must be smaller than the
corresponding Array dimension. If a Width value is
even, then Width+1 will be used instead. The value of
Width does not affect the running time of SMOOTH to
a great extent.

Note - A Width value of zero or 1 implies no
smoothing. However, if the NAN keyword is set, then
any NaN values within the Array will be treated as
missing data and will be replaced.

Tip - For a multidimenional array, set widths to 1
within the Width vector for dimensions that you don't
want smoothed.

Item Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 109
SQRT

STRARR

TAN

TANH

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The SQRT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The TAN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The TANH function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
What’s New in IDL 5.5 New and Enhanced IDL Routines

110 Chapter 1: Overview of New Features in IDL 5.5
TOTAL

TVSCL

UINDGEN

UINT

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The TOTAL function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The TVSCL procedure supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The UINDGEN function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The UINT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 111
UINTARR

UL64INDGEN

ULINDGEN

ULON64ARR

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The UL64INDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The ULINDGEN function supports the new thread
pool keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.
What’s New in IDL 5.5 New and Enhanced IDL Routines

112 Chapter 1: Overview of New Features in IDL 5.5
ULONARR

ULONG

ULONG64

VOIGT

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The UNLONG function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Di This modified argument can now specify dimensions
as a single array as well as a sequence of scalar values.

Thread Pool Keywords

(Windows, UNIX only)

The ULONG64 function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The VOIGT function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 113
WARP_TRI

WHERE

WIDGET_BASE

Item Description

TPS This new keyword uses Thin Plate Spline interpolation
which is ideal for modeling functions with complex
local distortions, such as warping functions, which are
too complex to be fit with polynomials.

Item Description

Thread Pool Keywords

(Windows, UNIX only)

The WHERE function supports the new thread pool
keywords. For more information, see “Multi-
Threading Keywords” on page 119 and Chapter 2,
“Multi-Threading in IDL”.

Item Description

CONTEXT_EVENTS

(Windows, UNIX only)

Set this new keyword to generate context events when
the right mouse button is pressed over the widget. To
request right mouse button events in a draw widget use
the BUTTON_EVENTS keyword to
WIDGET_DRAW at creation or the
DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL for an existing draw widget. A
right button press generates a WIDGET_DRAW event
with the EVENT.TYPE field equal to 0 and the
EVENT.RELEASE field equal to 4.
What’s New in IDL 5.5 New and Enhanced IDL Routines

114 Chapter 1: Overview of New Features in IDL 5.5
WIDGET_CONTROL

WIDGET_INFO

CONTEXT_MENU

(Windows, UNIX only)

Set this new keyword to cause a context menu to be
created. The context menu base must be a child of one
of the following types of widgets:

• WIDGET_BASE

• WIDGET_DRAW

• WIDGET_TEXT

• WIDGET_LIST

Item Description

CONTEXT_EVENTS

(Windows, UNIX only)

Set this new keyword to enable context menu events
generated by right mouse button clicks. Setting a zero
value disables such events. This keyword applies to
widgets created with WIDGET_BASE,
WIDGET_TEXT, or WIDGET_LIST.

Item Description

CONTEXT_EVENTS

(Windows, UNIX only)

Set this new keyword to return 1 if Widget_ID is a
widget with the CONTEXT_EVENTS attribute set.
Otherwise, 0 is returned. This keyword applies to
widgets created with WIDGET_BASE,
WIDGET_TEXT, or WIDGET_LIST.

Item Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 115
WIDGET_LIST

SYSTEM_COLORS

(Windows, UNIX only)

This new keyword requires a valid IDL widget
identifier and returns an IDL structure named
WIDGET_SYSTEM_COLORS. The structure
contains RGB values for 25 display elements. Each
RGB value is a three-dimensional array of integers
representing the red, green, blue values in the range 0
to 255 or a value of –1 if unavailable.

For more detailed information on the
WIDGET_SYSTEM_COLORS structure fields and
their meaning see the “Emulating System Colors in
Application Widgets” on page 41.

Item Description

CONTEXT_EVENTS

(Windows, UNIX only)

Set this new keyword to generate context events when
the right mouse button is pressed over the widget. To
request right mouse button events in a draw widget use
the BUTTON_EVENTS keyword to
WIDGET_DRAW at creation or the
DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL for an existing draw widget. A
right button press generates a WIDGET_DRAW event
with the EVENT.TYPE field equal to 0 and the
EVENT.RELEASE field equal to 4.

Item Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

116 Chapter 1: Overview of New Features in IDL 5.5
WIDGET_SLIDER

WIDGET_TEXT

Item Description

SCROLL Under the Motif window manager, the SCROLL value
specifies how many units the scroll bar should move
when the user clicks the left mouse button inside the
slider area, but not on the slider itself. The default on
Motif is 10% of the slider width. On Macintosh and
Microsoft Windows, the SCROLL value specifies how
many units the scroll bar should move when the user
clicks the left mouse button on the slider arrows, but
not within the slider area or on the slider itself. The
default on Macintosh and Microsoft Windows is 1
unit.

Item Description

CONTEXT_EVENTS

(Windows, UNIX only)

Set this new keyword to generate context events when
the right mouse button is pressed over the widget. To
request right mouse button events in a draw widget use
the BUTTON_EVENTS keyword to
WIDGET_DRAW at creation or the
DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL for an existing draw widget. A
right button press generates a WIDGET_DRAW event
with the EVENT.TYPE field equal to 0 and the
EVENT.RELEASE field equal to 4.
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 117
WRITE_TIFF

Item Description

BITS_PER_SAMPLE This new keyword can be used for a grayscale image,
by being set to either 1, 4, or 8 to indicate the bits per
sample to write. For 1-bit (bi-level) images, an output
bit is assigned the value 1 if the corresponding input
pixel is nonzero. For 4-bit grayscale images, the input
pixel values should be in the range 0 through 15. The
default is BITS_PER_SAMPLE = 8. This keyword is
ignored if an RGB image or color palette is present, or
if one of the FLOAT, LONG, or SHORT keywords is
set.
What’s New in IDL 5.5 New and Enhanced IDL Routines

118 Chapter 1: Overview of New Features in IDL 5.5
ORIENTATION Set this new keyword to indicate the orientation of the
image with respect to the columns and rows of Image.
Possible values are:

• 1 = Column 0 represents the left-hand side, and
row 0 represents the top.

• 2 = Column 0 represents the right-hand side, and
row 0 represents the top.

• 3 = Column 0 represents the right-hand side, and
row 0 represents the bottom.

• 0 or 4 = Column 0 represents the left-hand side,
and row 0 represents the bottom.

• 5 = Column 0 represents the top, and row 0
represents the left-hand side.

• 6 = Column 0 represents the top, and row 0
represents the right-hand side.

• 7 = Column 0 represents the bottom, and row 0
represents the right-hand side.

• 8 = Column 0 represents the bottom, and row 0
represents the left-hand side.

The default is ORIENTATION=1.

Warning - Not all TIFF readers honor the value of the
ORIENTATION field. IDL writes the value into the
file, but many known readers ignore this value. In such
cases, it is recommended that the image be converted
to top to bottom order with the REVERSE function
and then ORIENTATION be set to 1.

UNITS Set this new keyword to indicate the units of the
XRESOL and YRESOL keywords. Possible values
are:

• 1 = No units

• 2 = Inches (the default)

• 3 = Centimeters

Item Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 119
Multi-Threading Keywords

These keywords can be used to modify IDL’s use of the IDL Thread Pool to perform
calculations. See Chapter 2, “Multi-Threading in IDL” for a complete listing of the
operators and routines which support multi-threading in this release.

XRESOL This existing keyword sets the horizontal resolution.
Units may now be set for XRESOL using the UNITS
keyword.

YRESOL This existing keyword sets vertical resolution. Units
may now be specified for YRESOL using the UNITS
keyword.

Keyword Description

TPOOL_MAX_ELTS

(Windows, UNIX only)

Use this keyword to override the default and use a
different upper limit for a given computation call
without altering the !CPU system variable.

If !CPU.TPOOL_MAX_ELTS is non-zero, IDL will
use the single threaded version of any routine with
more than !CPU.TPOOL_MAX_ELTS elements to
avoid situations where use of the thread pool can be
slower than the single threaded case because the
threads end up fighting each other for access to system
memory.

TPOOL_MIN_ELTS

(Windows, UNIX only)

Use this keyword to override the default and use a
different lower limit for a given computation call
without altering the !CPU system variable.

Use of the thread pool requires some overhead. If a
given computation does not involve enough data
points to make it worthwhile, the threaded version of a
routine can be slower than the non-threaded version.
To avoid this pitfall, IDL does not use the thread pool
for computations involving fewer than
!CPU.TPOOL_MIN_ELTS elements.

Item Description
What’s New in IDL 5.5 New and Enhanced IDL Routines

120 Chapter 1: Overview of New Features in IDL 5.5
Updates to Executive Commands

The following list of executive commands have been updated as indicated.

TPOOL_NOTHREAD

(Windows, UNIX only)

If TPOOL_NOTHREAD is set, the routine will not
use the thread pool, and instead uses the non-threaded
implementation of the routine. Normally, IDL decides
whether to use the thread pool for a given computation
based on the current setting of the !CPU system
variable.

Executive Command Update Description

.SKIP The .SKIP command skips one or more statements and
stops. It is useful for moving past a program statement
that caused an error. If the optional argument n is
present, it gives the number of statements to skip;
otherwise, a single statement is skipped.

Note - .SKIP does not skip into a called routine.

Keyword Description
New and Enhanced IDL Routines What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 121
New and Updated System Variables

The following system variables have been added or updated in IDL 5.5:

System Variable Description

!CPU Supplies information about the state of the system
processor, and of IDL’s use of it. !CPU is read-only,
and cannot be modified directly.

!ERROR_STATE A new field has been added to the returned structure
called SYS_CODE_TYPE. The new field follows the
SYS_CODE field and comes before the MSG field.

The SYS_CODE_TYPE field is a string describing the
type of system code contained in the SYS_CODE
field. Possible values are:

• errno — Unix/Posix system error.

• win32 — Microsoft Windows Win32 system error.

• winsock — Microsoft Windows sockets library
error.

• macos — Macintosh system error.

A null string in this field indicates that there is no
system code corresponding to the current error.

!VERSION This variable has been changed by the addition of an
OS_NAME field.

!WARN The !WARN system variable no longer contains the
TRUNCATED_FILENAME field.
What’s New in IDL 5.5 New and Updated System Variables

122 Chapter 1: Overview of New Features in IDL 5.5
Features Obsoleted

Obsoleted Routines

The following routines were present in IDL Version 5.4 but became obsolete in IDL
Version 5.5. These routines have been replaced with new routines or new keywords
to existing routines that offer enhanced functionality. These obsoleted routines should
not be used in new IDL code.

Note
ERF and ERFC are the standard mathematical names for the error function and
complimentary error function. However, because of their short length, users should
be aware of conflicts with their existing code which might have variables or
functions named erf or erfc. Existing uses of the name erf or erfc should be
replaced.

Obsoleted Keywords and Arguments

The following keywords and arguments became obsolete in IDL Version 5.5. These
keywords and arguments have been replaced with new routines or new keywords to
existing routines that offer enhanced functionality. These obsoleted keywords and
arguments should not be used in new IDL code.

Routine Replaced By

ERRORF ERF

Routine Item Description

WRITE_TIFF Order The Order argument is obsolete, and
has been replaced by the
ORIENTATION keyword. Code that
uses the Order argument will
continue to work as before, but new
code should use the ORIENTATION
keyword instead.
Features Obsoleted What’s New in IDL 5.5

Chapter 1: Overview of New Features in IDL 5.5 123
READ_TIFF ORDER The ORDER keyword is obsolete,
and has been replaced by the
ORIENTATION keyword. Code that
uses the ORDER keyword will
continue to work as before, but new
code should use the ORIENTATION
keyword instead.

Routine Item Description
What’s New in IDL 5.5 Features Obsoleted

124 Chapter 1: Overview of New Features in IDL 5.5
Platforms Supported in this Release

IDL 5.5 supports the following platforms and operating systems:

† For UNIX, the supported versions indicate that IDL was either built on (the lowest
version listed) or tested on that version. You can install and run IDL on other versions
that are binary compatible with those listed.

†† IDL 5.5 was built on the Linux 2.2 kernel with glibc 2.1 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run IDL on your version.

††† Includes G3, G4 and iMac

Platform Vendor Hardware
Operating

System
Supported
Versions

UNIX† Compaq Alpha Tru64 UNIX 5.1

Compaq Alpha Linux Red Hat 6.2††

HP PA-RISC HP-UX 11.0

IBM RS/6000 AIX 4.3

Intel Intel x86 Linux Red Hat 6.0, 7.1††

SGI Mips IRIX 6.5.1

SUN SPARC Solaris 8

SUN SPARC
(64-bit Ultra)

Solaris 8

SUN Intel x86 Solaris 8

Windows Microsoft Intel x86 Windows 98, NT 4.0, 2000

Macintosh Apple PowerMAC††† MacOS 8.6, 9.x

Table 1-7: Platforms Supported in IDL 5.5
Platforms Supported in this Release What’s New in IDL 5.5

Chapter 2:

Multi-Threading in IDL
This chapter describes the implementation of the IDL Thread Pool and how it can be used to
accelerate your computations.
The IDL Thread Pool 126
Controlling the Thread Pool in IDL 128

Routines Supporting the Thread Pool . . . 134
What’s New in IDL 5.5 125

126 Chapter 2: Multi-Threading in IDL
The IDL Thread Pool

Multi-threading can be used to increase the speed of numeric computations by using
multiple system processors to simultaneously carry out different parts of the
computation. IDL uses a thread pool, a pool of multiple computation threads that are
used as helpers to accelerate numerical computations, for this purpose. The
implementation of the IDL thread pool allows IDL to automatically determine
whether a specified computation can be accomplished using parallel processing to
save time.

IDL automatically evaluates all computations to determine whether or not to use the
thread pool to carry them out. This decision is based on attributes such as the number
of data elements involved, the availability of multiple CPUs in the current system,
and the applicability of the thread pool to the specific computation. The IDL user has
the ability to alter the parameters used by IDL to make this decision, either on a
global basis for the duration of the IDL session, or for an individual computation.

IDL supports the use of the thread pool on all platforms except AIX and Macintosh.

Benefits of the IDL Thread Pool

The IDL thread pool will increase processing performance on certain computations.
When not involved in a calculation, the threads in the thread pool are inactive and
consume little in the way of system resources. When IDL reaches a computation that
can use the thread pool and which would benefit from parallel execution, it divides
the task into sub-parts for each thread, enables the thread pool to do the computation,
waits until the thread pool completes, and then continues. Other than the improved
performance, the end result is virtually indistinguishable when compared to the same
computation performed in the standard single-threaded manner.

Possible Drawbacks to the Use of the IDL Thread Pool

There are instances when allowing IDL to use its default thread pool settings can
produce results which are less than optimal. For instance, the thread pool can actually
take longer to complete a given job, or cause other undesirable effects if used in
inappropriate situations.

The following situations describe when it is better to override the initial thread pool
settings:

• Computation of a relatively small number of data elements. The IDL
thread pool requires a small fixed overhead when compared to a non-threaded
version of the same computation. Normally, computational speed efficiency is
The IDL Thread Pool What’s New in IDL 5.5

Chapter 2: Multi-Threading in IDL 127
achieved when the multiple CPUs work in parallel and the speed-up is much
larger than the overhead required to use them. However, if the computation
does not include enough data elements (each element being a data value of a
particular data type), the overhead exceeds the benefit and the overall
computation speed can be slower.

• Large computation that requires virtual memory use. If the desired
computation is too large to fit into physical memory, the threads in the thread
pool may cause page faults which will activate the virtual memory system. If
more than one thread encounters this situation simultaneously, the threads will
compete with each other for access to memory and performance will fall below
that of a single-threaded approach to the computation.

• Multiple users on a shared system competing for CPU use. On a large
multi-user system, an IDL application that uses the thread pool may consume
all available CPUs, thus affecting other users of the system by reducing overall
performance.

• Sensitivity to numerical precision. Algorithms that are sensitive to the order
of operations may produce different results when performed by the thread
pool. Such results are due to the use of finite precision floating point types, and
are equally correct within the precision of the data type.
What’s New in IDL 5.5 The IDL Thread Pool

128 Chapter 2: Multi-Threading in IDL
Controlling the Thread Pool in IDL

IDL allows you to programmatically control the use of thread pool. This section
discusses the following aspects of thread pool use:

• Using the Initial Settings of the Thread Pool

• Programatically Controlling the Settings of the Thread Pool

• Disabling the Thread Pool

Note
For a list of the types of computations that support the thread pool, see “Routines
Supporting the Thread Pool” on page 134.

Using the Initial Settings of the Thread Pool

The current values of the parameters that determine IDL’s use of the thread pool for
computations are always available in the !CPU system variable. !CPU is initialized
by IDL at startup with default values for the number of CPUs (threads) to use, as well
as the minimum and maximum number of data elements. If you have more than one
processor on your system, if your desired computation is able to use the thread pool,
and if the number of data elements in your computation falls into the allowed range
(neither too few, nor too many), then IDL will employ the thread pool in that
calculation.

If the number of data elements is too low (is below the minimum allowed number),
the overhead associated with the use of the thread pool will exceed the potential
performance gain. If the number of data elements is too high (exceeds the maximum
number of data elements), you may not have enough available memory on your
system, requiring the use of virtual memory which degrades performance. For these
reasons, IDL will not use the thread pool for computations that fall outside the
specified number of elements.

Programmatically Controlling the Settings of the Thread Pool

There are two ways to control the settings for the thread pool in IDL:

• Use the CPU procedure to alter the global thread pool settings for a session or
group of computations.

• Use the thread pool keywords supported by individual IDL routines to override
the current global thread pool settings for the duration of that single call.
Controlling the Thread Pool in IDL What’s New in IDL 5.5

Chapter 2: Multi-Threading in IDL 129
Controlling the Thread Pool Settings for a Session or Group of
Computations

The global parameters that control IDL’s use of the thread pool are always visible in
the !CPU system variable. IDL initializes the defaults for these values at startup. The
CPU procedure is used to modify these parameters to better fit individual needs. This
procedure allows you to specify:

• The minimum number of data elements required before IDL will use the thread
pool.

• The maximum number of data elements for which IDL will use the thread
pool.

• The number of threads to use (Note that specifying the use of 1 thread disables
the use of the thread pool).

For more information on the CPU procedure, see “CPU” on page 194.

The !CPU system variable supplies information about your system, including the
current global thread pool parameters. !CPU is read-only, and cannot be modified
directly. The CPU procedure is used to change the values in !CPU. The fields of
!CPU are shown in the following table:

Field Description

HW_VECTOR Information on whether or not the system supports a
vector unit (e.g. Macintosh Altivec/Velocity Engine).
Possible values are:

• 1 — True, the system supports a vector unit

• 0 — False

Note - This value is currently always 0 (False) on
platforms other than Macintosh.

VECTOR_ENABLE Information about whether or not the use of a vector
unit is enabled in IDL. Possible values are:

• 1 — True (IDL will use a vector unit, if such a unit
is available on the current system)

• 0 — False

Note - This value is currently always 0 (False) on
platforms other than Macintosh.

Table 2-1: Fields of the !CPU System Variable Structure
What’s New in IDL 5.5 Controlling the Thread Pool in IDL

130 Chapter 2: Multi-Threading in IDL
Note
The following examples will only work on systems with more than one processor.
Do not try these examples on a single processor system.

As a first example, imagine that we want to make sure that the thread pool is not used
unless there are at least 50,000 data elements and no more than 1,000,000. We set the
minimum to 50,000 since we know, for our particular system, that at least 50,000

HW_NCPU The number of CPUs on the system IDL is currently
running on.

TPOOL_NTHREADS The number of threads that IDL will use in thread pool
computations. The initial value is equal to the value
contained in HW_NCPU, so that each thread will have
the potential to run in parallel with the others. For
numerical computation, there is no benefit to using
more threads than your system has CPUs. However,
depending on the size of the problem and the number of
other programs running on the system, there may be a
performance advantage to using fewer CPUs.

TPOOL_MIN_ELTS The number of data elements in a computation that are
necessary before IDL will use the thread pool. If the
number of elements is less than TPOOL_MIN_ELTS,
IDL will perform the computation without using the
thread pool. Use this parameter to prevent IDL from
using the thread pool on tasks that are too small to
benefit from it.

TPOOL_MAX_ELTS If non-zero, the maximum number of elements in a
computation that will be processed using the thread
pool. Computations with more than this number of
elements will not use the thread pool. Setting
TPOOL_MAX_ELTS to 0 (the default) means that no
limit is imposed and any computation with at least
TPOOL_MIN_ELTS can use the thread pool. Set this
parameter if large jobs are causing virtual memory
paging on your system.

Field Description

Table 2-1: Fields of the !CPU System Variable Structure
Controlling the Thread Pool in IDL What’s New in IDL 5.5

Chapter 2: Multi-Threading in IDL 131
floating point data elements are required before the use of the thread pool will exceed
the overhead required to use it. We set the maximum to 1,000,000 since we know that
1,000,000 floating point data elements will exceed the maximum amount of memory
we want to use for this computation.

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta))^2

In this example, the thread pool will be used since we are performing a computation
on an array of 65,341 data elements which falls between the minimum and maximum
thresholds. Note that we altered the global thread pool parameters to achieve this. An
alternative approach that does not change the global defaults in shown in
“Controlling the Thread Pool Settings for a Specific Computation” on page 132.

In the next example, we will:

• Save the current thread pool settings from the !CPU system environment
variable.

• Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a floating point computation.

• Perform a floating point computation.

• Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

• Perform a double precision computation.

• Restore the thread pool settings to their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool:

; Retrieve the current thread pool settings
threadpool = !CPU

; Modify the thread pool settings
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000, $

TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)
What’s New in IDL 5.5 Controlling the Thread Pool in IDL

132 Chapter 2: Multi-Threading in IDL
; Perform computation, using 2 threads
sineSquared = 1. - (COS(!DTOR*theta))^2

; Modify thread pool settings for new data type
CPU, TPOOL_MAX_ELTS = 50000, TPOOL_MIN_ELTS = 10000

; Create 65,341 elements of double precision data
theta = DINDGEN(361, 181)

; Perform computation
sineSquared = 1. - (COS(!DTOR*theta))^2

;Return thread pool settings to their initial values
CPU, TPOOL_MAX_ELTS = threadpool.TPOOL_MAX_ELTS, $

TPOOL_MIN_ELTS = threadpool.TPOOL_MIN_ELTS, $
TPOOL_NTHREADS = threadpool.HW_NCPU

Controlling the Thread Pool Settings for a Specific Computation

All routines that support the thread pool accept the following three keywords that
allow you to override the thread pool settings for the duration of a single call. This
allows you to modify the settings for a particular computation without affecting the
global default settings of your session.

The three thread pool keywords are described in the following table.

Keyword Description

TPOOL_MAX_ELTS If non-zero, this keyword sets the maximum number
of data elements for a given computation. If the
number of elements you specify is exceeded, IDL will
not use the thread pool for this computation. Setting
this value to 0 removes any limit on maximum number
of elements, and any computation with at least
TPOOL_MIN_ELTS will use the thread pool.

This keyword overrides the default value, which is
given by !CPU.TPOOL_MAX_ELTS.

Table 2-2: The Thread Pool Keywords
Controlling the Thread Pool in IDL What’s New in IDL 5.5

Chapter 2: Multi-Threading in IDL 133
We can use the TPOOL_MIN_ELTS and TPOOL_MAX_ELTS keywords to modify
the example used in the previous section so that it does not alter the global default
thread pool settings:

; Create 65,341 elements of floating point data
theta = FINDGEN(361, 181)

; Perform computation and override session settings for maximum
; and minimum number of elements
sineSquared = 1. - (COS(!DTOR*theta, TPOOL_MAX_ELTS = 1000000, $

TPOOL_MIN_ELTS = 50000))^2

Disabling the Thread Pool

There are two ways to disable the thread pool in IDL:

• Employ the CPU procedure to alter the default global thread pool parameters,
either for an entire IDL session, or just for a related group of computations.

• Use the thread pool keywords to a routine to disable the thread pool for a
specific single computation.

In the first example, we will disable the thread pool for the session by setting the
number of threads to use to 1:

CPU, TPOOL_NTHREADS = 1

In the next example, we will disable the thread pool for a specific computation using
the TPOOL_NOTHREAD keyword:

sineSquared = 1. - (COS(!DTOR*theta, /TPOOL_NOTHREAD))^2

TPOOL_MIN_ELTS This keyword sets the minimum number of data
elements for a given computation. If the number of
elements is less than what you specified, IDL will not
use the thread pool for this computation. Use this
keyword to prevent IDL from using the thread pool on
tasks that are too small to benefit from it.

This keyword overrides the default value, which is
given by !CPU.TPOOL_MIN_ELTS.

TPOOL_NOTHREAD If set, the computation will not use the thread pool.

Keyword Description

Table 2-2: The Thread Pool Keywords
What’s New in IDL 5.5 Controlling the Thread Pool in IDL

134 Chapter 2: Multi-Threading in IDL
Routines Supporting the Thread Pool

The operators and routines currently supporting the thread pool in IDL are listed in
the section that follows, grouped per the functional category (as listed in the IDL
Quick Reference) to which the routines belong.

Binary and Unary Operators:

Mathematical Routines:

• – • +

• NOT • AND

• / • *

• EQ • NE

• GE • LE

• GT • LT

• > • <

• OR • XOR

• ^ • MOD

• # • ##

• ABS • ERRORF • MATRIX_MULTIPLY

• ACOS • EXP • ROUND

• ALOG • EXPINT • SIN

• ALOG10 • FINITE • SINH

• ASIN • FLOOR • SQRT

• ATAN • GAMMA • TAN

• CEIL • GAUSSINT • TANH

• CONJ • IMAGINARY • VOIGT

• COS • ISHFT

• COSH • LNGAMMA
Routines Supporting the Thread Pool What’s New in IDL 5.5

Chapter 2: Multi-Threading in IDL 135
Image Processing Routines:

Array Creation Routines:

Non-string Data Type Conversion Routines:

• BYTSCL • INTERPOLATE

• CONVOL • POLY_2D

• FFT • TVSCL

• BINDGEN • LINDGEN

• BYTARR • L64INDGEN

• CINDGEN • MAKE_ARRAY

• DCINDGEN • REPLICATE

• DCOMPLEXARR • UINDGEN

• DINDGEN • ULINDGEN

• FINDGEN • UL64INDGEN

• INDGEN

• BYTE • LONG

• COMPLEX • LONG64

• DCOMPLEX • UINT

• DOUBLE • ULONG

• FIX • ULONG64

• FLOAT
What’s New in IDL 5.5 Routines Supporting the Thread Pool

136 Chapter 2: Multi-Threading in IDL
Array Manipulation Routines:

Programming and IDL Control Routines:

• MAX • TOTAL

• MIN • WHERE

• REPLICATE_INPLACE

• BYTEORDER
Routines Supporting the Thread Pool What’s New in IDL 5.5

Chapter 3:

Using COM Objects
in IDL
This chapter describes the following topics:
Introduction to IDL COM Objects 138
Skills Required to Use COM Objects 139

IDL COM Naming Schemes 140

Using IDL IDispatch COM Objects 142
Using ActiveX Controls in IDL 149
What’s New in IDL 5.5 137

138 Chapter 3: Using COM Objects in IDL
Introduction to IDL COM Objects

COM (Component Object Model) objects are a specification and implementation for
building software components that may be used to build programs or to add
functionality to existing programs running on the Windows platform. COM
components are written in a variety of programming languages (although most are
written in C++) and are able to be utilized in a program at run time without having to
recompile the program. In IDL, COM objects, regardless of type or method of
creation, are treated as IDL objects. In order to call methods associated with a COM
object, a user employs the arrow operator →, just as would be done when calling any
other object method in IDL. IDL will then internally recognize this COM-based
object and will route the method call to the internal COM subsystem for dispatching.

When adding COM functionality in IDL, an IDispatch interface must be exposed on
all COM objects accessed by IDL since this interface is used by IDL to call methods
on each COM object. Although this may seem to be a limitation, it is a minimal one
since it is common to scriptable objects, for which the interface is designed.

There are two main uses for COM functionality in IDL:

• Using the IDLcomIDispatch object to instantiate a desired COM object by
using a provided class or program ID. This method is ideal for COM objects
that do not utilize a graphical-user interface.

• Using the WIDGET_ACTIVEX function to embed an ActiveX control in an
IDL widget hierarchy.

The primary differences in IDL between using IDLcomIDispatch-based objects and
using an ActiveX control are the methods by which they are created and managed.
These methods of creation and management are detailed in this chapter.

Note
IDL COM functionality is not accessible when in IDL demonstration mode.
Introduction to IDL COM Objects What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 139
Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, some
knowledge of COM is required to use the functionality. There is a large difference
between the level at which a typical user sees IDL compared to that of the internal
programmer. To the user, IDL is an easy-to-use, array-oriented language that
combines numerical and graphical abilities, and runs on many platforms. Internally,
IDL is a large application that includes a compiler, an interpreter, graphics,
mathematical computation, user interface, and a large amount of operating system-
dependent code.

The amount of knowledge required to effectively write internal code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have internal programming experience and
proficiency.

ActiveX

To use the IDL ActiveX control, a level of understanding of ActiveX and COM is
necessary. Although IDL provides an abstracted interface to COM functionality,
some knowledge of COM is required to use the functionality.
What’s New in IDL 5.5 Skills Required to Use COM Objects

140 Chapter 3: Using COM Objects in IDL
IDL COM Naming Schemes

IDL uses the identifier for the underlying COM object to construct the IDL class
name. This then ensures each particular type of COM object has a unique IDL class
type. Since two types of class identifiers exist in COM (class ID and program ID)
these must also be indicated during this class construction process. With this in mind
the following naming scheme was devised:

<Base Class Name>$<ID Type>$<ID>

For IDispatch based objects, the class name takes the following form:

Using a COM Class ID

IDLcomIDispatch$CLSID$<the Class ID>

Using a COM Program ID

IDLcomIDispatch$PROGID$<the Program ID>

Note
All IDispatch-based objects created in IDL sub-class from the intrinsic IDL class
IDLcomIDispatch.

For ActiveX based objects, the class name takes one of the following forms:

• Using a COM Class ID

IDLcomActiveX$CLSID$<the Class ID>

• Using a COM Program ID

IDLcomActiveX$PROGID$<the Program ID>

Note
All ActiveX based objects created in IDL sub-class from the intrinsic IDL class
IDLcomActiveX, which is a sub-class from IDLcomIDispatch.

It should be noted that the COM Class ID separator (-) or the Program ID separator
(.) should be indicated using an underscore (_) when constructing the class name
for the particular object name in IDL.

About Obtaining COM Class Identifiers

The COM system depends on COM class identifiers and program identifiers to
instantiate or reference a particular control. These are often obtained from the control
IDL COM Naming Schemes What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 141
being used or documentation provided by a given control. This information can be
difficult to obtain, but Microsoft provides a tool to determine the controls available
on a particular computer and to retrieve the Class Identifier for that particular control,
object, or type library. This downloadable tool (which has also been known also as
the OLE/COM Object Viewer) can be found at:

http://www.microsoft.com/com
What’s New in IDL 5.5 IDL COM Naming Schemes

http://www.microsoft.com/com

142 Chapter 3: Using COM Objects in IDL
Using IDL IDispatch COM Objects

Creation, management, and destruction of IDispatch-based COM objects that are not
being placed in an IDL Widget GUI are carried-out using standard IDL object-
management routines.

You can create an IDispatch COM object by using the OBJ_NEW() function. Either
the class identifier or the program identifier is provided to indicate which object will
be created. For information on creating an IDispatch COM object, see “IDispatch
Object Creation” on page 143.

Once creation is complete, the object is then usable and may be manipulated like any
other IDL object. Method calls are identical to any other IDL object. For information
on dispatching methods for an IDispatch COM object, see “IDispatch Method
Dispatching” on page 143 and for information on IDispatch COM Object Property
Management see “IDispatch Property Management” on page 144.

You can destroy the object by using the OBJ_DESTROY procedure. This will release
the internal COM object and free any resources associated with it. For information on
destroying an IDispatch COM object, see “IDispatch COM Object Destruction” on
page 144.

IDL IDispatch Naming Schemes

IDL uses the identifier for the underlying COM object to construct the IDL class
name. This ensures each particular type of COM object has a unique IDL class type.
Since two types of class identifiers exist in COM, those must also be included during
this class construction process. With this in mind, the following naming scheme is
used:

<Base Class Name>$<ID Type>$<ID>

For IDispatch-based objects, the class name takes the following form:

• Using a COM Class ID:

IDLcomIDispatch$CLSID$<the Class ID>

• Using a COM Program ID:

IDLcomIDispatch$PROGID$<the Program ID>

Note
All IDispatch-based objects created in IDL subclass from the intrinsic IDL class
IDLcomIDispatch.
Using IDL IDispatch COM Objects What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 143
Note
The COM Class ID separator (-) or the Program ID separator (.) should be
indicated using an underscore (_) when constructing the class name for the
particular object name in IDL.

Note
The curly braces ({}) for COM Class IDs should not be included in the name of
the object. They are invalid characters for IDL Class names.

IDispatch Object Creation

When working with IDispatch COM objects in IDL, it is first necessary to learn the
method used to create an IDL object which represents a COM object which in turn
implements the IDispatch interface.

As with any IDL object, an IDispatch COM object is created using the intrinsic IDL
function, OBJ_NEW(). Using the provided class or program ID, the underlying
implementation then employs the internal IDL COM sub-system to instantiate the
desired COM object.

Note
OBJ_NEW should only be used to create non-ActiveX COM objects.
WIDGET_ACTIVEX is the only method used to create an IDL object that
represents an ActiveX control. Creating an ActiveX control (an object based off the
class name prefix IDLcomActiveX$) using OBJ_NEW() is not supported and the
results are undefined.

IDispatch Method Dispatching

The → operator is used to invoke an IDispatch method as it is with other IDL object
methods. The general pattern is:

IDLcomIDispatch-><MethodName>

There is no distinction between a procedure or a function in COM, so only the IDL
procedure interface is supported when calling IDispatch methods.

When a method is called on a COM-based IDL object, the method name and
arguments are passed to the internal IDL COM subsystem and are used to construct
the equivalent pair of calls IDispatch → GetIDsOfNames() and
IDispatch → Ιnvoke() on the underlying COM object.
What’s New in IDL 5.5 Using IDL IDispatch COM Objects

144 Chapter 3: Using COM Objects in IDL
Note
Aside from other COM-based objects, no complex types are supported as
parameters to procedure calls. This is due to the limitations imposed by the internal
data representations used in COM (VARIANTs).

Note
IDL objects use method names to identify and call object life cycle methods (INIT
and CLEANUP). As such, these method names should be considered reserved. If an
underlying ActiveX or IDispatch object implements a method using either INIT or
CLEANUP, those methods will be overridden by the IDL life cycle methods and
will not be accessible from IDL. Also, these ActiveX or IDispatch object cannot
have their own GetProperty or SetProperty method, since IDL uses these methods
to manage properties.

IDispatch COM Object Destruction

The OBJ_DESTROY procedure is used to destroy an IDispatch COM object.

When OBJ_DESTROY is called with a COM-based object as an argument, the
underlying reference to the COM object is released and IDL resources relating to that
object are freed.

Destruction of the IDL object does not automatically cause the destruction of the
underlying COM object. Due to the method by which COM objects are implemented,
object destruction is left to the component itself. A reference-counting methodology
is used in COM. Therefore, when the IDL COM object is destroyed, IDL will
decrement the reference count on the underlying object. It is then left to the
underlying object to determine when to destroy itself based on other outstanding
reference counts.

IDispatch Property Management

The ability to set and get properties is also provided by the IDispatch interface. In
order to do these tasks, the following methods are defined:

IDLcomIDispatch -> GetProperty, <PROPERTY_NAME> = Value, [arg0, arg1, …]

IDLcomIDispatch -> SetProperty, <PROPERTY_NAME> = Value

As is the convention with other IDL objects, IDispatch property names are mapped to
IDL keywords and the underlying property values are treated as IDL keyword values.

It is also important to realize that the provided keywords must map directly to a
property name or an error will be shown. Any keyword that is passed into either of
Using IDL IDispatch COM Objects What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 145
the property routines is assumed to be a fully-qualified IDispatch property name. As
such, the partial keyword name functionality provided by IDL is not valid with IDL
COM-based objects.

Some getable properties also require input parameters. Therefore, the GetProperty
method can take parameters. If parameters are provided, only one property (keyword)
can be provided.

COM Objects Returning IDispatch Pointers to Other Objects

It is not uncommon for COM objects to return references to other COM objects. This
is done either through accessing a property or a method call. If an IDLcomIDispatch
object returns a reference to another COM object’s IDispatch interface, then the IDL
COM subsystem automatically converts the returned IDispatch pointer into an
IDLcomIDispatch object for immediate use. For example:

obj1 → GetOtherObject, obj2

obj2 → DoSomeMethod

The GetOtherObject() method for obj1 returns a reference to the IDispatch interface
for obj2. The IDL COM subsystem takes the IDispatch reference and creates an
IDLcomIDispatch object for obj2.

Note
If an IDispatch reference is returned and an IDLcomIDispatch object is
automatically created, the newly created object must be explicitly destroyed by
calling OBJ_DESTROY. For example, after using obj2 from the above example, it
must be destroyed by calling:

OBJ_DESTROY, obj2

Example: Creating an IDispatch COM Object in IDL

In this example, an IDispatch COM object is used in IDL.

All COM components and ActiveX controls must be registered on a machine before
they can be used by any client. A component (.dll or .exe) or a control (.ocx) can
be registered using the command line program regsvr32 , supplying it with name of
the component or control to register.

For example, if you had a COM component named RSIDemoComponent and it was
contained in a file named rsidemo.dll . To install it in a directory called
What’s New in IDL 5.5 Using IDL IDispatch COM Objects

146 Chapter 3: Using COM Objects in IDL
C:\IDL_DIR\Demo and then use it, you would first need to register this component
by performing either of the following actions:

• Open a command prompt window and type in the following:

regsvr32 'c:\idl_dir\demo\rsidemo.dll'

• Similarly, you could open a command prompt window, change directories to
C:\idl_dir , then just say:

regsvr32 rsidemo.dll

Note
The “ /s ” parameter means to be silent during the registration. If the “ /s ” is not
specified, then a pop-up dialog is presented saying the component was registered
correctly.

Now, an object called RSIDemoObj1 could be created. This object could be created
using either the Program ID or the Class ID. However, if the Class ID is used, the
hyphens (-) must be replaced with underscores (_) since hyphens are not valid
symbols for IDL identifiers.

1. The procedure would begin by creating a object from that component.

pro IDispatchDemo

obj1 = $
OBJ_NEW('IDLCOMIDispatch$PROGID$RSIDemoComponent.RSIDemoObj1')

or (with Class ID):

obj1 = OBJ_NEW($
'IDLCOMIDispatch$CLSID$A77BC2B2_88EC_4D2A_B2B3_F556ACB52E52')

2. Next, the following line of code would be added to call the GetCLSID method,
which returns the Class ID for the component. (This should be: '{A77BC2B2-
88EC-4D2A-B2B3-F556ACB52E52}')

obj1 -> GetCLSID, strCLSID
PRINT, strCLSID

Note
The GetCLSID returns the class identifier of the object using the standard
COM separators (-).

3. Next, to get the current value of the MessageStr property, you would enter:

obj1 -> GetProperty, MessageStr = outStr
PRINT, outStr
Using IDL IDispatch COM Objects What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 147
4. You could also set the MessageStr property of the object and display it:

obj1 -> SetProperty, MessageStr = 'Hello, world'
obj1 -> DisplayMessageStr

5. The Msg2InParams method can be used to take two input parameters and
concatenates them into the resultant string (the Output string should be:
String part of input25):

instr = 'String part of input'
val = 25L
obj1 -> Msg2InParams, instr, val, outStr
PRINT, outStr

6. The GetIndexObject() method may return an object reference to three
possible objects (If the index is not 1, 2, or 3, it will return an error).

The three possible objects are:

• RSIDemoObj1, WHERE index = 1

• RSIDemoObj2, WHERE index = 2

• RSIDemoObj3, WHERE index = 3

7. You could get a reference to one of these objects, RSIDemoObj3 for example:

obj1 -> GetIndexObject, 3, obj3

8. Since all three objects have the 'GetCLSID ' method, they could now be used to
verify that the desired object was returned (The output should be:
{13AB135D-A361-4A14-B165-785B03AB5023}):

obj3 -> GetCLSID, obj3CLSID
PRINT, obj3CLSID

9. Always destroy a retrieved object when you are finished with it:

OBJ_DESTROY, obj3

10. Next, the GetArrayOfObjects() method could be used to return a vector
of object references to RSIDemoObj1 , RSIDemoObj2 , RSIDemoObj3 ,
respectively (The number of elements in the vector is returned in the first
parameter and should be 3):

obj1 -> GetArrayOfObjects, cItems, objs
PRINT, cItems
What’s New in IDL 5.5 Using IDL IDispatch COM Objects

148 Chapter 3: Using COM Objects in IDL
11. Since each object implements the 'GetCLSID() ' method, you could loop
through all the object references and get its class ID:

FOR i = 0, cItems-1 do begin
objs[i] -> GetCLSID, objCLSID
PRINT, 'Object[',i,'] CLSID: ', objCLSID

ENDFOR

12. Always destroy object references when you are finished with them, and end
the procedure:

OBJ_DESTROY, objs
OBJ_DESTROY, obj1
END
Using IDL IDispatch COM Objects What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 149
Using ActiveX Controls in IDL

The instantiation of an ActiveX control in IDL is very different than typical
IDispatch-based object instantiation. This is because ActiveX controls must be
placed in an IDL Widget hierarchy. In addition, events generated by the ActiveX
control are carried over into the IDL event model. Aside from these important
differences, the user then calls methods as they would with any other IDL object.

Note
IDL ActiveX control creation is available on the Windows NT/Windows 2000
platforms only.

ActiveX-based COM Naming Schemes

IDL uses the identifier for the underlying COM object to construct the IDL class
name. This ensures each particular type of COM object has a unique IDL class type.
Since two types of class identifiers exist in COM, those must also be indented during
this class construction process. With this in mind, the following naming scheme is
used:

<Base Class Name>$<ID Type>$< ID>

For ActiveX based objects, the class name takes the following form:

• Using a COM Class ID:

IDLcomActiveX$CLSID$< the Class ID>

• Using a COM Program ID:

IDLcomActiveX$PROGID$< the Program ID>

Note
All ActiveX-based objects created in IDL subclass from the intrinsic IDL class
IDLcomActiveX, which is a sub-class of IDLcomIDispatch.

Note
The COM Class ID separator (-) or the Program ID separator (.) should be
indicated using an underscore (_) when constructing the class name for the
particular object name in IDL.
What’s New in IDL 5.5 Using ActiveX Controls in IDL

150 Chapter 3: Using COM Objects in IDL
ActiveX Control Creation

The creation of an ActiveX control in IDL follows the model used with Object
Graphics in draw widgets. The control is created using a procedural interface that is
exposed as part of the IDL Widget system. Methods of the ActiveX control are
accessed via the underlying IDL object that represents the control. Essentially, all
IDL Widget-related functionality is managed using the IDL Widget interface, while
COM method dispatching is handled using the underlying IDL object that represents
the ActiveX control.

The WIDGET_ACTIVEX function is used to create an ActiveX control in IDL and
also to place it into an IDL widget hierarchy. The Program ID or Class ID of the
underlying IDL object that represents the ActiveX control is retrieved using the
GET_VALUE keyword to the WIDGET_CONTROL. This is similar to the
operations used to get the window object from an IDL draw widget.

Note
If you specify the class ID of a non-ActiveX component using
WIDGET_ACTIVEX(), the results are unpredictable (this is not recommended
since it may or may not work depending on the actual COM object.)

Note
WIDGET_ACTIVEX is the only method used to create an IDL object that
represents an ActiveX control. OBJ_NEW should only be used to create non-
ActiveX COM objects. Creating an ActiveX control (an object based off the class
name prefix IDLcomActiveX$) using OBJ_NEW() is not supported and the results
are undefined.

ActiveX Control Access and Dispatching

Access to the IDL object that represents the control is gained using the GET_VALUE
keyword to the WIDGET_CONTROL procedure after Widget realization. Once the
underlying IDL object is retrieved from the Widget that represents the ActiveX
control, methods are called using the same methodology and underlying technology
as IDispatch-based COM objects in IDL.

Events generated by the ActiveX control are also dispatched using the standard IDL
widget methodology. When an ActiveX event is passed into IDL, it is packaged into
an IDL structure that contains the ActiveX event parameters, and is dispatched using
the standard IDL widget event-dispatching methodologies. As such, user event-
handling routines are called with a structure that contains the ActiveX event
parameters.
Using ActiveX Controls in IDL What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 151
Note
IDL objects use method names to identify and call object life cycle methods (INIT
and CLEANUP). As such, these method names should be considered reserved. If an
underlying ActiveX or IDispatch object implements a method using either INIT or
CLEANUP those methods will be overridden by the IDL life cycle methods and not
accessible from IDL. The ActiveX or IDispatch object also cannot have a
GetProperty or SetProperty method, since IDL uses these to manage properties.

Freeing Dynamic Resources

The HEAP_FREE routine frees all dynamic resources associated with the argument
which is passed to the routine. This routine will traverse the data represented by the
variable, traversing arrays and structures. When an object value is encountered, it is
released using the OBJ_DESTROY routine. When a pointer value is encountered, its
contents are scanned, freeing any dynamic resources, and then the pointer itself is
released using the PTR_FREE routine. This is especially helpful with routines that
return dynamically allocated information.

HEAP_FREE may be used:

• To release the dynamic resources contained a structure returned from the
GetRecord method of an IDLdbRecordset object.

• To release any dynamic resources associated with an event generated by an
ActiveX control that is embedded in an IDL Widget hierarchy using
Widget_ActiveX().

Arrays can be contained in the events that are propagated from the ActiveX control.
If an event contains an array, the array is placed in an IDL pointer and that pointer is
contained in the event structure. Since this memory is in an IDL Pointer, it is the
user’s responsibility to free the pointer using PTR_FREE or HEAP_FREE.

If it is unclear if the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when finished. This will ensure that all dynamic portions of the structure are released.

ActiveX Control Destruction

Destruction of an ActiveX control takes places in any of the following cases:

• When the widget hierarchy that it belongs to is destroyed.

• When a call to WIDGET_CONTROL, /DESTROY is made.

• When the underlying IDL object is destroyed using OBJ_DESTROY.
What’s New in IDL 5.5 Using ActiveX Controls in IDL

152 Chapter 3: Using COM Objects in IDL
Example: Embedding an ActiveX Control in IDL

The following example demonstrates just how you can embed and ActiveX control in
an IDL widget. This example creates a base widget that calls an ActiveX calendar
control (obtained from the Microsoft Office 2000 package). The result is a clickable
desktop IDL calendar.

Copy and paste the following text into an IDL Editor window. After saving the file as
cal.pro , compile and run the program.

1. Give your program an identifying header:

pro cal_event, ev

2. Prepare the base widget:

WIDGET_CONTROL, ev.id, GET_VALUE = oCal
WIDGET_CONTROL, ev.top, GET_UVALUE = state
ocal->GetProperty, day=day, year=year, month = month
WIDGET_CONTROL, state.Day , SET_VALUE = STRTRIM(day,2)
WIDGET_CONTROL, state.year , SET_VALUE = STRTRIM(year,2)
WIDGET_CONTROL, state.month , SET_VALUE = STRTRIM(month,2)

HEAP_FREE, ev
end

3. Now create an ActiveX control:

pro cal
wBase = WIDGET_BASE(COLUMN = 1, SCR_XSIZE = 400)
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, value = 'Month: ')
wMonth = WIDGET_LABEL(wSubBase, value = 'October')
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Day: ')
wDay = WIDGET_LABEL(wSubBase, VALUE = '22')
wSubBase = WIDGET_BASE(wBase, /ROW)
wVoid = WIDGET_LABEL(wSubBase, VALUE = 'Year: ')
wYear = WIDGET_LABEL(wSubBase, VALUE = '1999')
wAx=WIDGET_ACTIVEX(WBASE, $

'{8E27C92B-1264-101C-8A2F-040224009C02}')

WIDGET_CONTROL, wBase, /REALIZE

WIDGET_CONTROL, wBase, $
SET_UVALUE = {month:wMonth, day:wDay, year:wYear}

; Should be IDispatch object for ActiveX control
WIDGET_CONTROL, wAx, GET_VALUE = oAx
oAx->GetProperty, day = day, year = year, month = month
Using ActiveX Controls in IDL What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 153
WIDGET_CONTROL, wDay , SET_VALUE = STRTRIM(day, 2)
WIDGET_CONTROL, wyear , SET_VALUE = STRTRIM(year, 2)
WIDGET_CONTROL, wmonth , SET_VALUE = STRTRIM(month, 2)

XMANAGER, 'cal', wBase
END

4. Now run this example. You should see the following results:

Example: Creating an Excel Spreadsheet in IDL

In the next example, WIDGET_ACTIVEX is used to create a widget which calls an
Excel spreadsheet (obtained from the Microsoft Office 2000 package) in IDL.

; excel_getSelection

; Purpose:
; Grab the data out of the current selection.
; Return 1 on success, 0 on error.
FUNCTION EXCEL_GETSELECTION, oExcel, aData

; Get the Selection collection of cells.
oExcel -> GetProperty, SELECTION = oSel
oSel -> GetProperty, COUNT = nCells

IF(nCells lt 1)THEN BEGIN
OBJ_DESTROY, oSel
RETURN, 0

ENDIF

; Now get the size of the selection.
oSel -> GetProperty, COLUMNS = oCols, ROWS = oRows

Figure 3-1: A Simple and Functional Calendar Created in IDL
with an ActiveX Widget
What’s New in IDL 5.5 Using ActiveX Controls in IDL

154 Chapter 3: Using COM Objects in IDL
oCols -> GetProperty, COUNT = nCols
OBJ_DESTROY, oCols
oRows -> GetProperty, COUNT = nRows
OBJ_DESTROY, oRows
aData = FLTARR (nCols, nRows,/NOZERO)

FOR i = 1, nCells DO BEGIN
oSel -> GetProperty, ITEM = oItem, i
oItem -> GetProperty, VALUE = vValue
aData[i-1] = vValue
OBJ_DESTROY, oItem
endfor

OBJ_DESTROY, oSel
RETURN,1
END

; excel_setData

; Purpose:
; Set or initialize the values in the spreadsheet.
PRO excel_setData , oExcel
; size of data
nX = 20
oExcel -> GetProperty, ActiveSheet=oSheet
im = BESELJ (dist(nX))

for i = 0, nx-1 do begin
for j = 0, nx-1 do begin

oSheet -> GetProperty, cells = oCell, i+1, j+1
oCell -> SetProperty, value = im(i,j)
OBJ_DESTROY, oCell

ENDFOR
ENDFOR

OBJ_DESTROY, oSheet
end

; excel_event

; Purpose:
; Event Handler for the excel component.

pro excel_event, ev
WIDGET_CONTROL ,ev.top, GET_UVALUE = sState, /NO_COPY

IF(ev.dispid eq 1513)THEN BEGIN; Selection is changing
; Get the data for the selection
IF(excel_getSelection(sState.oExcel, aData) NE 0)THEN BEGIN
szData = SIZE (aData)
; Are we 2d?
IF(szData[0] GT 1 AND szData[1] GT 1 AND szData[2] GT 1)THEN $

SURFACE, aData $
ELSE $
Using ActiveX Controls in IDL What’s New in IDL 5.5

Chapter 3: Using COM Objects in IDL 155
PLOT, aData ; nope, 1 D
ENDIF
ENDIF

; Reset our state variable.
WIDGET_CONTROL, ev.top, SET_UVALUE = sState,/NO_COPY
HEAP_FREE, ev
END

; Excel

; Purpose:
; Example that places the excel like spreadsheet
; control in an IDL widget and then plots the selected data.
PRO Excel
; Makes an ActiveX control.
!Except = 0
wBase = WIDGET_BASE(COLUMN = 1, TITLE = "IDL Excel Example")
wAx = WIDGET_ACTIVEX (WBASE,$

'{0002E510-0000-0000-C000-000000000046}',$
SCR_XSIZE = 800, SCR_YSIZE = 600)

wTxt = WIDGET_TEXT(wBase, value = ' ')
WIDGET_CONTROL, wBase,/REALIZE, SET_UVALUE = {wAX:wAX, wTXT:wTxt}
WIDGET_CONTROL, wAX, GET_VALUE = oExcel
oExcel->SetProperty, DisplayTitleBar = 0
excel_setData, oExcel
WIDGET_CONTROL, wBase, SET_UVALUE = {oExcel:oExcel, wText:wTxt}
XMANAGER, 'excel', wBase, /NO_BLOCK
END

Access to ActiveX Methods and Properties

In IDL, an ActiveX control is represented in a similar method as an IDispatch COM
object, as an IDL object. The user gains access to the object using
WIDGET_CONTROL with the GET_VALUE keyword, passing in the widget id
returned from WIDGET_ACTIVEX(). The GET_VALUE keyword returns an IDL
object that represents the ActiveX control. For example:

idAX = Widget_ActiveX(idParent, idClass)

WIDGET_CONTROL, idTLB, /REALIZE
WIDGET_CONTROL, idAX, GET_VALUE=oAX
oAX -> ActiveXMethod

Once the object is retrieved, methods are called just like any other IDL object
methods.
What’s New in IDL 5.5 Using ActiveX Controls in IDL

156 Chapter 3: Using COM Objects in IDL
The object is destroyed by either calling OBJ_DESTROY on it, or when the Widget
is destroyed.

Note
If the initialization method for IDispatch object creation uses a standard class name,
the class returned from GET_VALUE should also have a standard name. One
possibility is IDLcomActiveX.

Event Propagation

Events generated by an ActiveX control are propagated to the IDL user as with any
other IDL Widget event; a user event handler is called with an event structure.

For ActiveX controls, events are signaled by the control calling methods on the
ActiveX container that holds the control. The parameters to the called method contain
the attributes associated with the triggered event. To propagate this information to
IDL, this method call is converted into an IDL event structure.

As with other IDL Widget event structures, the first three fields contain the Widget
ID, Top ID and the Handler ID for the event. For event typing, the DISPID and
method name of the ActiveX event callback method are also included in the structure.
As for the parameter information, it is placed in fields of the structure. The parameter
name is used to construct the field name and the associated data is placed in the field.
Because this is dynamic, an anonymous structure is used for this event.

The following gives an idea of the basic format of an ActiveX event structure:

{ID : 0L,
TOP : 0L,
HANDLER : 0L,
DISPID : 0L, ; The DISPID of the callback method
METHOD : "", ; The name of the callback method

<Param1 name> : <Param1 value>,
<Param2 name> : <Param2 value>,

<ParamN name> : <ParamN value>
}

Using ActiveX Controls in IDL What’s New in IDL 5.5

Chapter 4:

Using the Shortcut
Menu Widget
This chapter describes the implementation of shortcut menus for use with the IDL Widget system.
Introduction to the Shortcut Menu Widget 158
Creating a Base Widget Shortcut Menu . . 160

Creating a Draw Widget Shortcut Menu . . 162

Creating a List Widget Shortcut Menu . . . 166
Creating a Text Widget Shortcut Menu . . 170
What’s New in IDL 5.5 157

158 Chapter 4: Using the Shortcut Menu Widget
Introduction to the Shortcut Menu Widget

In IDL 5.5, a new shortcut menu widget (otherwise known as a context sensitive or
pop-up menu) has been added to enhance the IDL widget system. These menus are
available for:

• Base widgets

• Text widgets

• Draw widgets

• List widgets

Shortcut menus are made available to the user in two separate components. The first
is a shortcut menu event and the second is the creation and display of a shortcut menu
for a particular widget.

Shortcut menu events can be requested by setting the CONTEXT_EVENTS keyword
at the time of widget creation using WIDGET_CONTROL. The events can be turned
off for a particular widget by calling WIDGET_CONTROL with the
CONTEXT_EVENTS keyword set to 0.

To create a shortcut menu, use the CONTEXT_MENU keyword when creating a
widget base. The shortcut menu base must be a child of one of the widget types listed
previously. The shortcut menu base is a special base widget that can be used as a
parent to add menu buttons or regular push buttons. The use of this widget is similar
to the way a menu bar base is used as a parent for menu buttons. Multiple shortcut
menu bases may be associated with a single widget.

Figure 4-1: Widget Shortcut Menu
Introduction to the Shortcut Menu Widget What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 159
Note
For shortcut menus, both plain buttons and menu buttons are allowed while for
menu bars only menu buttons are allowed.

Using WIDGET_DISPLAYCONTEXTMENU

The new WIDGET_DISPLAYCONTEXTMENU procedure displays a shortcut
(context sensitive or pop-up) menu. After creating buttons for the shortcut menu, it
can be displayed using WIDGET_DISPLAYCONTEXTMENU. This is normally
called in an event handler that has processed a shortcut menu event or a button event
from a draw widget. This procedure takes the ID of the widget that is the parent of the
shortcut menu, the x and y location to display the menu, and the ID of the shortcut
menu base. The ID would normally be the event.id value of the shortcut menu event,
and the x and y locations also come from the shortcut event. As stated above, there
may be multiple shortcut menus for a particular widget. The last parameter of
WIDGET_DISPLAYCONTEXTMENU allows the user to specify which menu to
display. In the case of a draw widget that is the parent of a shortcut menu, the x and y
locations can be obtained from the button event structure.

When WIDGET_DISPLAYCONTEXTMENU is called it displays the shortcut menu
and handles the native event if the user selects a button. If a button is selected, a
button event is generated and the menu is dismissed. If no button is selected (the user
clicks elsewhere on the screen) then the menu is dismissed and no event is generated.
Normally no further processing would be done in the shortcut event or draw event
handler after calling WIDGET_DISPLAYCONTEXTMENU. The new user event is
queued and will be handled in a new call to the event handler.
What’s New in IDL 5.5 Introduction to the Shortcut Menu Widget

160 Chapter 4: Using the Shortcut Menu Widget
Creating a Base Widget Shortcut Menu

A base widget allows you to create the base upon which you can incorporate other
widgets. With new functionality in IDL, you can add a shortcut menu to your base
widget. Since a base widget does not usually cause events, you do not need to specify
when a context event occurs as shown in the following example:

; Event handler routine for the "Selection 1" button in
; the context menu of the top level base.
PRO FirstEvent, event

; Output that the "Selection 1" button has been pressed.
PRINT, ' '
PRINT, 'Selection 1 Pressed'

END

; Event handler routine for the "Selection 2" button in
; the context menu of the top level base.
PRO SecondEvent, event

; Output that the "Selection 1" button has been pressed.
PRINT, ' '
PRINT, 'Selection 2 Pressed'

END

; Event handler routine for the "Done" button in
; the context menu of the top level base.
PRO DoneEvent, event

; Output that the "Done" button has been pressed.
PRINT, ' '
PRINT, 'Done Pressed'

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END

; Event handler routine for the context menu of the
; top level base. This event handler routine is called
; when the user right-clicks on the top level base.
PRO ContextTLBaseExample_Event, event
Creating a Base Widget Shortcut Menu What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 161
; Obtain the widget ID of the context menu base.
contextBase = WIDGET_INFO(event.id, $

FIND_BY_UNAME = 'contextMenu')

; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, $

event.y, contextBase

END

; Main Routine: GUI creation routine.
PRO ContextTLBaseExample

; Initialize the top level (background) base. This base
; contains context events. In other words, the user
; can right-click on the base to obtain a context
; menu.
topLevelBase = WIDGET_BASE(/COLUMN, XSIZE = 100, $

YSIZE = 100, /CONTEXT_EVENTS)

; Initialize the base for the context menu.
contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $

UNAME = 'contextMenu')

; Initialize the buttons of the context menu.
firstButton = WIDGET_BUTTON(contextBase, $

VALUE = 'Selection 1', EVENT_PRO = 'FirstEvent')
secondButton = WIDGET_BUTTON(contextBase, $

VALUE = 'Selection 2', EVENT_PRO = 'SecondEvent')
doneButton = WIDGET_BUTTON(contextBase, VALUE = 'Done', $

/SEPARATOR, EVENT_PRO = 'DoneEvent')

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Handle the events from the GUI.
XMANAGER, 'ContextTLBaseExample', topLevelBase

END
What’s New in IDL 5.5 Creating a Base Widget Shortcut Menu

162 Chapter 4: Using the Shortcut Menu Widget
Creating a Draw Widget Shortcut Menu

A draw widget contains a rectangular area which functions as a standard IDL
graphics window. Using the new IDL functionality, shortcut menu options can be
added to a draw widget allowing for such choices as changing the color tables of an
image (as is demonstrated in the following example).

Note
The CONTEXT_EVENTS keyword may not be used with WIDGET_DRAW.
Draw widgets already support button events. When using a draw widget, enable
button events and then check for EVENT.RELEASE EQ 4 to indicate a right mouse
button release event.

; Event handler routine for the "XLOADCT" button in
; the context menu of the draw widget.
PRO LoadCTEvent, event

; Display the XLOADCT utility to allow the user to
; change the current color table.
XLOADCT, /BLOCK, GROUP = event.id

; Obtain the window ID of the draw widget.
imageDraw = WIDGET_INFO(event.top, $

FIND_BY_UNAME = 'imageDisplay')
WIDGET_CONTROL, imageDraw, GET_VALUE = windowDraw

; Obtain the image to redisplay it with the updated
; color table from XLOADCT utility.
WIDGET_CONTROL, event.top, GET_UVALUE = image

; Redisplay the image with the updated color table.
WSET, windowDraw
TV, image

END

; Event handler routine for the "XPALETTE" button in
; the context menu of the draw widget.
PRO PaletteEvent, event

; Display the XPALETTE utility to allow the user to
; modify some or all of the current color table.
XPALETTE, /BLOCK, GROUP = event.id
Creating a Draw Widget Shortcut Menu What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 163
; Obtain the window ID of the draw widget.
imageDraw = WIDGET_INFO(event.top, $

FIND_BY_UNAME = 'imageDisplay')
WIDGET_CONTROL, imageDraw, GET_VALUE = windowDraw

; Obtain the image to redisplay it with the updated
; color table from XPALETTE utility.
WIDGET_CONTROL, event.top, GET_UVALUE = image

; Redisplay the image with the updated color table.
WSET, windowDraw
TV, image

END

; Event handler routine for the "Done" button in
; the context menu of the top level base.
PRO DoneEvent, event

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END

; Event handler routine for the events of the draw
; widget. This event handler routine is called
; when the user left- or right-clicks on the draw widget.
PRO DrawEvents, event

; If either a left- or right-click occurs, obtain the image to
; determine the value of the pixel at the location under the
; cursor.
WIDGET_CONTROL, event.top, GET_UVALUE = image

; If either a left- or right-click occurs, output the location
; and value of the pixel under the cursor.
PRINT, ' '
PRINT, 'Column: ', event.x
PRINT, 'Row: ', event.y
PRINT, 'Value: ', image[event.x, event.y]
What’s New in IDL 5.5 Creating a Draw Widget Shortcut Menu

164 Chapter 4: Using the Shortcut Menu Widget
; If a right-click occurs, display the context menu and send
; its events to the other event handler routines.
IF (event.release EQ 4) THEN BEGIN

; Obtain the widget ID of the context menu base.
contextBase = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'drawContext')
; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, event.y, $
contextBase

ENDIF

END

; Main Routine: GUI creation routine.
PRO ContextDrawExample

; Determine the path to the file containing the image.
file = FILEPATH('worldelv.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the image size parameter.
imageSize = [360, 360]

; Import in the image from the file.
image = READ_BINARY(file, DATA_DIMS = imageSize)

; Initialize the top level (background) base.
topLevelBase = WIDGET_BASE(/COLUMN)

; Initialize the draw widget to contain the display
; of the image. This draw widget enables buttons events. In
; other words, the user can left- or right-click on the image
; display to obtain the location of the pixel under the
; cursor or to obtain a context menu, respectively.
imageDraw = WIDGET_DRAW(topLevelBase, /BUTTON_EVENTS, $

XSIZE = imageSize[0], YSIZE = imageSize[1], $
EVENT_PRO = 'DrawEvents', UNAME = 'imageDisplay')

; Initialize the base for the context menu.
contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $

UNAME = 'drawContext')
Creating a Draw Widget Shortcut Menu What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 165
; Initialize the buttons of the context menu.
loadCTButton = WIDGET_BUTTON(contextBase, $

VALUE = 'XLOADCT', EVENT_PRO = 'LoadCTEvent')
paletteButton = WIDGET_BUTTON(contextBase, $

VALUE = 'XPALETTE', EVENT_PRO = 'PaletteEvent')
doneButton = WIDGET_BUTTON(contextBase, VALUE = 'Done', $

/SEPARATOR, EVENT_PRO = 'DoneEvent')

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Set the UVALUE of the top level base to the image so
; it can be accessed within the event handler routines.
WIDGET_CONTROL, topLevelBase, SET_UVALUE = image

; Obtain the window ID of the draw widget.
WIDGET_CONTROL, imageDraw, GET_VALUE = windowDraw

; Set the display to the window within the draw
; widget.
WSET, windowDraw

; Initialize the display.
DEVICE, DECOMPOSED = 0
LOADCT, 5

; Display the image in the window of the draw
; widget.
TV, image

; Determine the center location of the image display.
column = imageSize[0]/2
row = imageSize[1]/2

; Initially show the cursor in the center of the image
; display.
TVCRS, column, row

; Handle the events from the GUI.
XMANAGER, 'ContextDrawExample', topLevelBase, $

/NO_BLOCK

END
What’s New in IDL 5.5 Creating a Draw Widget Shortcut Menu

166 Chapter 4: Using the Shortcut Menu Widget
Creating a List Widget Shortcut Menu

A list widget allows the use of a list of selectable text elements. An item can be
selected by pointing with the mouse cursor and selecting a text element. With
shortcut menu functionality, a right mouse click on this text element can allow for
further choices as is shown in the following example widget:

Note
You can determine if a context menu event occurred with a list widget by the name
of the event structure as in the following statement fragment:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT')...

; Event handler routine for the "Rotate 90 Degrees" button in
; the context menu of the top level base.
PRO Rotate90Event, event

; Output that the "Rotate 90 Degrees" button has been pressed.
PRINT, ' '
PRINT, 'Rotate 90 Degrees Pressed'

END

; Event handler routine for the "Rotate 180 Degrees" button in
; the context menu of the top level base.
PRO Rotate180Event, event

; Output that the "Rotate 180 Degrees" button has been pressed.
PRINT, ' '
PRINT, 'Rotate 180 Degrees Pressed'

END

; Event handler routine for the "Rotate 270 Degrees" button in
; the context menu of the top level base.
PRO Rotate270Event, event

; Output that the "Rotate 270 Degrees" button has been pressed.
PRINT, ' '
PRINT, 'Rotate 270 Degrees Pressed'

END
Creating a List Widget Shortcut Menu What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 167
; Event handler routine for the "Shift One Quarter" button in
; the context menu of the top level base.
PRO Shift025Event, event

; Output that the "Shift One Quarter" button has been pressed.
PRINT, ' '
PRINT, 'Shift One Quarter Pressed'

END

; Event handler routine for the "Shift One Half" button in
; the context menu of the top level base.
PRO Shift050Event, event

; Output that the "Shift One Half" button has been pressed.
PRINT, ' '
PRINT, 'Shift One Half Pressed'

END

; Event handler routine for the "Shift Three Quarters" button in
; the context menu of the top level base.
PRO Shift075Event, event

; Output that the "Shift Three Quarters" button has been pressed.
PRINT, ' '
PRINT, 'Shift Three Quarters Pressed'

END

; Event handler routine for the "Done" button in
; the context menu of the top level base.
PRO DoneEvent, event

; Output that the "Done" button has been pressed.
PRINT, ' '
PRINT, 'Done Pressed'

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END
What’s New in IDL 5.5 Creating a List Widget Shortcut Menu

168 Chapter 4: Using the Shortcut Menu Widget
; Event handler routine for the events of the draw
; widget. This event handler routine is called
; when the user left- or right-clicks on the draw widget.
PRO ListEvents, event

; If either a left- or right-click occurs, obtain the selection
; index to determine the type of geometry change to occur.
selection = WIDGET_INFO(event.id, /LIST_SELECT)

; Output resulting selection.
PRINT, ' '
PRINT, 'Selection = ', selection

; If a right-click occurs display the appropriate context menu.
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT') THEN $

BEGIN
; If "Rotate" is selected, then use the rotate context menu.
IF (selection EQ 0) THEN BEGIN

; Obtain the widget ID of the rotate context menu base.
contextBase = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'contextRotate')
; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, $
event.y, contextBase

ENDIF
; If "Shift" is selected, then use the shift context menu.
IF (selection EQ 1) THEN BEGIN

; Obtain the widget ID of the shift context menu base.
contextBase = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'contextShift')
; Display the context menu and send its events to the
; other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, $
event.y, contextBase

ENDIF
ENDIF

END

; Main Routine: GUI creation routine.
PRO ContextListExample

; Initialize the top level (background) base.
topLevelBase = WIDGET_BASE(/COLUMN)
Creating a List Widget Shortcut Menu What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 169
; Initialize the geometry transform list. This list widget enables
; context events. In other words, the user can left- or right-click
; on the list to obtain a general selection or to make a specific
; selection, respectively.
list = ['Rotate', 'Shift']
geometryList = WIDGET_LIST(topLevelBase, VALUE = list, $

/CONTEXT_EVENTS, EVENT_PRO = 'ListEvents')

; Initialize the base for the rotate context menu.
contextRotateBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $

UNAME = 'contextRotate')

; Initialize the buttons of the rotate context menu.
rotate90Button = WIDGET_BUTTON(contextRotateBase, $

VALUE = 'Rotate 90 Degrees', EVENT_PRO = 'Rotate90Event')
rotate180Button = WIDGET_BUTTON(contextRotateBase, $

VALUE = 'Rotate 180 Degrees', EVENT_PRO = 'Rotate180Event')
rotate270Button = WIDGET_BUTTON(contextRotateBase, $

VALUE = 'Rotate 270 Degrees', EVENT_PRO = 'Rotate270Event')
doneButton = WIDGET_BUTTON(contextRotateBase, VALUE = 'Done', $

/SEPARATOR, EVENT_PRO = 'DoneEvent')

; Initialize the base for the shift context menu.
contextShiftBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $

UNAME = 'contextShift')

; Initialize the buttons of the shift context menu.
shift025Button = WIDGET_BUTTON(contextShiftBase, $

VALUE = 'Shift One Quarter', EVENT_PRO = 'Shift025Event')
shift050Button = WIDGET_BUTTON(contextShiftBase, $

VALUE = 'Shift One Half', EVENT_PRO = 'Shift050Event')
shift075Button = WIDGET_BUTTON(contextShiftBase, $

VALUE = 'Shift Three Quarter', EVENT_PRO = 'Shift075Event')
doneButton = WIDGET_BUTTON(contextShiftBase, VALUE = 'Done', $

/SEPARATOR, EVENT_PRO = 'DoneEvent')

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Handle the events from the GUI.
XMANAGER, 'ContextListExample', topLevelBase

END
What’s New in IDL 5.5 Creating a List Widget Shortcut Menu

170 Chapter 4: Using the Shortcut Menu Widget
Creating a Text Widget Shortcut Menu

Text widgets are used to display text and to get text input from the user. Text widgets
can be one or more lines and can even contain scroll bars. An example of
incorporating a shortcut menu into a text widget follows:

Note
You can determine if a context menu event occurred with a text widget by the name
of the event structure as in the following statement fragment:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT')...

; Event handler routine for the "Column" button in
; the context menu of the text widget.
PRO ColumnEvent, event

; Obtain the location variable from the UVALUE of the
; text widget.
locationText = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyText')
WIDGET_CONTROL, locationText, GET_UVALUE = location

; If location index is set to "Row" change it to "Column".
IF (location[2] EQ 1) THEN BEGIN

titleLabel = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyLabel')
WIDGET_CONTROL, titleLabel, SET_VALUE = 'Column: '
location[2] = 0

ENDIF ELSE RETURN

; Store updated location variable in the UVALUE of the
; text widget.
WIDGET_CONTROL, locationText, SET_UVALUE = location

END

; Event handler routine for the "Row" button in
; the context menu of the text widget.
PRO RowEvent, event

; Obtain the location variable from the UVALUE of the
; text widget.
locationText = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyText')
WIDGET_CONTROL, locationText, GET_UVALUE = location
Creating a Text Widget Shortcut Menu What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 171
; If location index is set to "Column" change it to "Row".
IF (location[2] EQ 0) THEN BEGIN

titleLabel = WIDGET_INFO(event.top, FIND_BY_UNAME = 'xyLabel')
WIDGET_CONTROL, titleLabel, SET_VALUE = 'Row: '
location[2] = 1

ENDIF ELSE RETURN

; Store updated location variable in the UVALUE of the
; text widget.
WIDGET_CONTROL, locationText, SET_UVALUE = location

END

; Event handler routine for the "Done" button in
; the context menu of the text widget.
PRO DoneEvent, event

; Destroy the top level base.
WIDGET_CONTROL, event.top, /DESTROY

END

; Event handler routine for the events of the text
; widget. This event handler routine is called
; when the user left- or right-clicks in the text widget.
PRO TextEvents, event

; If a right-click occurs display the context menu.
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT') THEN $

BEGIN

; Obtain the widget ID of the context menu base.
contextBase = WIDGET_INFO(event.top, $

FIND_BY_UNAME = 'contextMenu')

; Display the context menu and send its events to
; the other event handler routines.
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, $

event.y, contextBase
ENDIF

; If text is edited, obtain new text inputed into widget.
WIDGET_CONTROL, event.id, GET_VALUE = textString
IF ((FIX(textString) GE 0) AND (FIX(textString) LE 360)) $

THEN textValue = FIX(textString) ELSE RETURN $
textValue = textValue[0]
What’s New in IDL 5.5 Creating a Text Widget Shortcut Menu

172 Chapter 4: Using the Shortcut Menu Widget
; Output resulting inputed value.
PRINT, ' '
PRINT, 'Text Value = ', textValue

; Obtain the location variable from the UVALUE of the
; text widget.
WIDGET_CONTROL, event.id, GET_UVALUE = location

; Determine if inputed value should be column or row.
IF(location[2] EQ 0) THEN location[0] = textValue $

ELSE location[1] = textValue

; Output resulting location.
PRINT, ' '
PRINT, 'Column = ', location[0]
PRINT, 'Row = ', location[1]

; Store updated location variable in the UVALUE of the
; text widget.
WIDGET_CONTROL, event.id, SET_UVALUE = location

END

; Main Routine: GUI creation routine.
PRO ContextTextExample

; Initialize the top level (background) base.
topLevelBase = WIDGET_BASE(/COLUMN)

; Initialize location variable. This variable contains
; the column value, the row value, and a location index.
; The location index determines if the text value represents
; a column value, or it represents a row value.
column = 180
row = 180
locationIndex = 0
location = [column, row, locationIndex]

; Set initial title of the label for the text widget.
title = 'Column: '

; Initialize a base to contain the text widget and its label.
textBase = WIDGET_BASE(topLevelBase, /ROW, /FRAME)

; Initialize the label of the text widget.
titleLabel = WIDGET_LABEL(textBase, VALUE = title, $

/DYNAMIC_RESIZE, UNAME = 'xyLabel')
Creating a Text Widget Shortcut Menu What’s New in IDL 5.5

Chapter 4: Using the Shortcut Menu Widget 173
; Initialize the text widget.
locationText = WIDGET_TEXT(textBase, VALUE = STRTRIM(column, 2), $

/EDITABLE, UNAME = 'xyText', /CONTEXT_EVENTS, $
UVALUE = location, EVENT_PRO = 'TextEvents')

; Initialize the base for the context menu.
contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU, $

UNAME = 'contextMenu')

; Initialize the buttons of the context menu.
columnButton = WIDGET_BUTTON(contextBase, $

VALUE = 'Column', EVENT_PRO = 'ColumnEvent')
rowButton = WIDGET_BUTTON(contextBase, $

VALUE = 'Row', EVENT_PRO = 'RowEvent')
doneButton = WIDGET_BUTTON(contextBase, VALUE = 'Done', $

/SEPARATOR, EVENT_PRO = 'DoneEvent')

; Display the GUI.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Handle the events from the GUI.
XMANAGER, 'ContextTextExample', topLevelBase

END
What’s New in IDL 5.5 Creating a Text Widget Shortcut Menu

174 Chapter 4: Using the Shortcut Menu Widget
Creating a Text Widget Shortcut Menu What’s New in IDL 5.5

Chapter 5:

New Objects
This chapter provides documentation for IDL Objects introduced in IDL 5.5.
IDLcomIDispatch 176 IDLffMrSID . 181
What’s New in IDL 5.5 175

176 Chapter 5: New Objects
IDLcomIDispatch

The IDLcomIDispatch object class creates a COM object that implements an
IDispatch interface. Using the provided class or program ID, the underlying
implementation will utilize the internal IDL COM sub-system to instantiate the
desired COM object.

Note
IDL objects use method names to identify and call object life cycle methods (INIT
and CLEANUP). As such, these method names should be considered reserved. If an
underlying ActiveX or IDispatch object implements a method using either INIT or
CLEANUP those methods will be overridden by the IDL life cycle methods and not
accessible from IDL.

Subclasses

A dynamic sub-class of IDLcomIDispatch is created when the object is instantiated.
A dynamic class name is created to provide a unique name for each component type,
while providing the same super-class across all IDispatch components.

Creation

See IDLcomIDispatch::Init

Methods

• IDLcomIDispatch::Init

• IDLcomIDispatch::GetProperty

• IDLcomIDispatch::SetProperty
IDLcomIDispatch What’s New in IDL 5.5

Chapter 5: New Objects 177
IDLcomIDispatch::Init

The IDLcomIDispatch::Init function method is used to initialize a given COM object
and establish a link between the resulting IDL object and the IDispatch interface of
the underlying COM object.

Syntax

Obj = OBJ_NEW('IDLcomIDispatch$<IDTYPE>$ID')

Arguments

None

Class Names

To ensure that each particular type of COM object has a unique IDL class type, the
identifier for the underlying COM object is utilized to construct the IDL class name.
Since two types of class identifiers exist in COM, those must also be indicted during
this class construction process. With this in mind the following naming scheme was
devised:

<Base Class Name>$<ID Type>$< ID>

For IDispatch based objects, the class name takes the following form:

Using a COM Class ID

IDLcomIDispatch$CLSID$< the Class ID>

Using a COM Program ID

IDLcomIDispatch$PROGID$< the Program ID>

Note
All IDispatch based objects created in IDL sub-class from the intrinsic IDL class
IDLcomIDispatch.

The COM Class ID separator (-) or the Program ID separator (.) should be
indicated using an underscore (_) when constructing the class name for the
particular object name. For example:

If the CLSID of an object is:

A77BC2B2-88EC-4D2A-B2B3-FS56ACB52ES2

then using IDLcomIDispatch to create an instance of the object would appear as:
What’s New in IDL 5.5 IDLcomIDispatch

178 Chapter 5: New Objects
demobj = OBJ_NEW $
('IDLcomIDispatch$CLSID$A77BC2B2-88EC_4D2A_B2B3_FS56ACB52ES2')

Note
The curly braces ({}) for COM Class IDs should not be included in the name of
the object. They are invalid characters for IDL Class names.
IDLcomIDispatch What’s New in IDL 5.5

Chapter 5: New Objects 179
IDLcomIDispatch::GetProperty

The IDLcomIDispatch::GetProperty function method is used to get properties for a
particular IDispatch interface. The IDispatch property names are mapped to IDL
keywords. The underlying property values are treated as IDL keyword values. This
follows conventions set forth by other IDL objects.

Note
The provided keywords must map directly to a property name or an error will be
thrown. Any keyword that is passed into either of the property routines is assumed
to be a fully-qualified IDispatch property name. As such, the partial keyword name
functionality provided by IDL is not valid with IDL COM based objects.

Note
Some getable properties require input parameters. As such, the GetProperty method
can take parameters. If parameters are provided, only one property can be provided.

Syntax

IDLcomIDispatch -> GetProperty, <PROPERTY_NAME> = Value, [arg0, arg1, …]

Arguments

Note
Some IDLcomIDispatch GetProperty calls take arguments. The argument used, if
any, is dependent on the individual property.
What’s New in IDL 5.5 IDLcomIDispatch

180 Chapter 5: New Objects
IDLcomIDispatch::SetProperty

The IDLcomIDispatch::SetProperty function method is used to set properties for a
particular IDispatch interface. The IDispatch property names are mapped to IDL
keywords. The underlying property values are treated as IDL keyword values. This
follows conventions set forth by other IDL objects.

Note
The provided keywords must map directly to a property name or an error will be
thrown. Any keyword that is passed into either of the property routines is assumed
to be a fully-qualified IDispatch property name. As such, the partial keyword name
functionality provided by IDL is not valid with IDL COM based objects.

Syntax

IDLcomIDispatch -> SetProperty, <PROPERTY_NAME> = Value

Arguments

None
IDLcomIDispatch What’s New in IDL 5.5

Chapter 5: New Objects 181
IDLffMrSID

An IDLffMrSID object class is used to query information about and load image data
from a MrSID (.sid) image file.

Superclasses

This class has no superclasses.

Subclasses

This class has no subclasses.

Creation

See IDLffMrSID::Init

Methods

This class has the following methods:

• IDLffMrSID::Cleanup

• IDLffMrSID::GetDimsAtLevel

• IDLffMrSID::GetImageData

• IDLffMrSID::GetProperty

• IDLffMrSID::Init
What’s New in IDL 5.5 IDLffMrSID

182 Chapter 5: New Objects
IDLffMrSID::Cleanup

The IDLffMrSID::Cleanup procedure method deletes all MrSID objects, closing the
MrSID file in the process. It also deletes the IDL objects used to communicate with
the MrSID library.

Syntax

OBJ_DESTROY, Obj

or

Obj -> [IDLffMrSID::]Cleanup(Only in subclass’ Cleanup method.)

Arguments

None.

Keywords

None.
IDLffMrSID What’s New in IDL 5.5

Chapter 5: New Objects 183
IDLffMrSID::GetDimsAtLevel

The IDLffMrSID::GetDimsAtLevel function method is used to retrieve the
dimensions of the image at a given level. This can be used, for example, to determine
what level is required to fit the image into a certain area.

Syntax

Dims = Obj -> [IDLMrSID::]GetDimsAtLevel (Level)

Arguments

Level

Set this argument to a scalar integer that specifies the level at which the dimensions
are to be determined. This level must be in the range returned by the LEVELS
keyword of IDLffMrSID::GetProperty.

Keywords

None.

Example

PRO MrSID_GetDimsAtLevel

; Initialize the MrSID file object.
oFile = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']))

; Get the range of levels of resolution contained within the file.
oFile -> GetProperty, LEVELS = lvls
PRINT, lvls
; IDL prints, -9, 4

; Print the image dimensions at the lowest image resolution
; where image level = 4.
imgLevelA = MAX(lvls)
dimsAtA = oFile-> GetDimsAtLevel(imgLevelA)
PRINT, 'Dimensions of lowest resolution image is', dimsAtA
;IDL prints, 32, 32
What’s New in IDL 5.5 IDLffMrSID

184 Chapter 5: New Objects
; Print the image dimensions at full resolution
; where image level = 0
dimsAtFull = oFile -> GetDimsAtLevel(0)
PRINT, 'Dimensions of full resolution image is', dimsAtFull
;IDL prints, 512, 512

;Print the image dimensions at the highest resolution
; where image level = -9
highestLvl = MIN(lvls)
dimsAtHighest = oFile -> GetDimsAtLevel(highestLvl)
PRINT, 'Dimensions of highest resolution image is', dimsAtHighest
;IDL prints, 262144, 262144

; Clean up object references.
OBJ_DESTROY, [oFile]

END
IDLffMrSID What’s New in IDL 5.5

Chapter 5: New Objects 185
IDLffMrSID::GetImageData

The IDLffMrSID::GetImageData function method extracts and returns the image
data from the MrSID file at the specified level and location.

Syntax

ImageData = Obj->[IDLMrSID::]GetImageData ([, LEVEL = lvl]
[, SUB_RECT = rect])

Return Value

ImageData returns an n-by-w-by-h array containing the image data where n is 1 for
grayscale or 3 for RGB images, w is the width and h is the height.

Note
The returned image is ordered bottom-up, the first pixel returned is located at the
bottom-left corner of the image. This differs from how data is stored in the MrSID
file where the image is top-down, meaning the pixel at the start of the file is located
at the top-left corner of the image.

Arguments

None.

Keywords

LEVEL

Set this keyword to an integer that specifies the level at which to read the image.

If this keyword is not set, the maximum level is used which returns the minimum
resolution (see the LEVELS keyword to IDLffMrSID::GetProperty).

SUB_RECT

Set this keyword to a four-element vector [x, y, xdim, ydim] specifying the position
of the lower left-hand corner and the dimensions of the sub-rectangle of the MrSID
image to return. This is useful for displaying portions of a high-resolution image.

If this keyword is not set, the whole image will be returned. This may require
significant memory if a high-resolution image level is selected.
What’s New in IDL 5.5 IDLffMrSID

186 Chapter 5: New Objects
If the sub-rectangle is greater than the bounds of the image at the selected level the
area outside the image bounds will be set to black.

Note
The elements of SUB_RECT are measured in pixels at the current level. This means
the point x = 10, y = 10 at level 1 will be located at x = 20, y = 20 at level 0 and
x = 5, y = 5 at level 2.

Example

PRO MrSID_GetImageData

; Initialize the MrSID file object.
oFile = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']))

; Get the range of levels of resolution contained within the file.
oFile -> GetProperty, LEVELS = lvls
PRINT, lvls
; IDL prints, -9, 4

; Get the image data at level 0.
imgDataA = oFile -> GetImageData(LEVEL = 0)
HELP, 'image array data at full resolution', imgDataA
;IDL prints, Array[1, 512, 512] indicating a grayscale 512 x 512
array.

; Display the full resolution image.
oImgA = OBJ_NEW('IDLgrImage', imgDataA)
oModelA = OBJ_NEW('IDLgrModel')
oModelA -> Add, oImgA
XOBJVIEW, oModelA, BACKGROUND = [0,0,0], $

TITLE = 'Full Resolution Image', /BLOCK

; Get the image data of a higher resolution image,
imgDataB = oFile -> GetImageData(LEVEL = -2)
HELP, imgDataB
; IDL returns [1,2048,2048] indicating a grayscale 2048 x 2048
array.
IDLffMrSID What’s New in IDL 5.5

Chapter 5: New Objects 187
; To save processing time, display only a 1024 x 1024 portion of
; the high resolution, using 512,512 as the origin..
imgDataSelect = oFile -> GetImageData(LEVEL = -2,$

SUB_RECT = [512, 512, 1024, 1024])
oImgSelect = OBJ_NEW('IDLgrImage', imgDataSelect)
oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oImgSelect

XOBJVIEW, oModel, BACKGROUND = [0,0,0], $
TITLE = 'Detail of High Resolution Image', /BLOCK

; Clean up object references.
OBJ_DESTROY, [oFile, oImgA, oModelA, oImgSelect, oModel]

END
What’s New in IDL 5.5 IDLffMrSID

188 Chapter 5: New Objects
IDLffMrSID::GetProperty

The IDLffMrSID::GetProperty function method is used to query properties
associated with the MrSID image.

Syntax

Obj->[IDLMrSID::]GetProperty [, CHANNELS=nChannels]
[, DIMENSIONS=Dims] [, LEVELS=Levels] [, PIXEL_TYPE=pixelType]
[, TYPE=strType] [, GEO_VALID=geoValid] [, GEO_PROJTYPE=geoProjType]
[, GEO_ORIGIN=geoOrigin] [, GEO_RESOLUTION=geoRes]

Arguments

None.

Keywords

CHANNELS

Set this keyword to a named variable that will contain the number of image bands.
For RGB images this is 3, for grayscale it is 1.

DIMENSIONS

Set this keyword equal to a named variable that will contain a two-element long
integer array of the form [width, height] that specifies the dimensions of the MrSID
image at level 0 (full resolution).

LEVELS

Set this keyword equal to a named variable that will contain a two-element long
integer array of the form [minlvl, maxlvl] that specifies the range of levels within the
current image. Higher levels are lower resolution. A level of 0 equals full resolution.
Negative values specify higher levels of resolution.

PIXEL_TYPE

Set this keyword to a named variable that will contain the IDL basic type code for a
pixel sample. For a list of the data types indicated by each type code, see “IDL Type
Codes” in the IDL Reference Guide.
IDLffMrSID What’s New in IDL 5.5

Chapter 5: New Objects 189
TYPE

Set this keyword to a named variable that will contain a string identifying the file
format. This should always be MrSID.

GEO_VALID

Set this keyword to a named variable that will contain a long integer that is set to:

• 1 - If the MrSID image contains valid georeferencing data.

• 0 - If the MrSID image does not contain georeferencing data or the data is in an
unsupported format.

Note
Always verify that this keyword returns 1 before using the data returned by any
other GEO_* keyword.

GEO_PROJTYPE

Set this keyword to a named variable that will contain an unsigned integer that
specifies the geoTIFF projected coordinate system type code. For example, type code
32613 corresponds to PCS_WGS84_UTM_zone_13N.

For more information on the geoTIFF file type and available type codes see:

http://www.remotesensing.org/geotiff/geotiff.html

GEO_ORIGIN

Set this keyword to a named variable that will contain a two-element double
precision array of the form [x, y] that specifies the location of the center of the upper-
left pixel.

GEO_RESOLUTION

Set this keyword to a named variable that will contain a two-element double
precision array of the form [xres, yres] that specifies the pixel resolution.

Example

PRO MrSID_GetProperty

; Initialize the MrSID object.
oFile = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']))
What’s New in IDL 5.5 IDLffMrSID

http://www.remotesensing.org/geotiff/geotiff.html

190 Chapter 5: New Objects
; Get the property information of the MrSID file
oFile -> GetProperty, CHANNELS = chan, LEVELS = $

lvls, Pixel_Type = pType, TYPE = fileType, GEO_VALID = geoQuery

; Print MrSID file information.
PRINT, 'Number of image channels = ', chan
; IDL returns 1 indicating one image band.

PRINT, 'Range of image levels = ', lvls
; IDL returns -9, 4, the minimum and maximum level values.

PRINT, 'Type code of image pixels = ', pType
; IDL returns 1 indicating byte data type.

PRINT, 'Image file type = ', FileType
; IDL returns "MrSID"

PRINT, 'Result of georeferencing data query = ', geoQuery
; IDL returns 0 indicating that the image does not contain
; georeferencing data.

; Destroy object references.
OBJ_DESTROY, [oFile]

END
IDLffMrSID What’s New in IDL 5.5

Chapter 5: New Objects 191
IDLffMrSID::Init

The IDLffMrSID::Init function method initializes an IDLffMrSID object containing
the image data from a MrSID image file.

Syntax

Result = OBJ_NEW(‘IDLffMrSID’, Filename [, /QUIET])

Arguments

Filename

Set this argument to a scalar string containing the full path and filename of a MrSID
file to be accessed through this IDLffMrSID object.

Note
This is a required argument; it is not possible to create an IDLffMrSID object
without specifying a valid MrSID file.

Keywords

QUIET

Set this keyword to suppress error messages while constructing the IDLffMrSID
object.

Example

oMrSID = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $
SUBDIRECTORY = ['examples', 'data']))
What’s New in IDL 5.5 IDLffMrSID

192 Chapter 5: New Objects
IDLffMrSID What’s New in IDL 5.5

Chapter 6:

New IDL Routines
This chapter describes IDL Routines introduced in IDL version 5.5.
What’s New in IDL 5.5 193

194 Chapter 6: New IDL Routines
CPU

The CPU procedure controls the way IDL uses the system processor for calculations.
The results of using the CPU procedure are reflected in the state of the !CPU system
variable.

Syntax

CPU [,TPOOL_MAX_ELTS = NumMaxElts] [,TPOOL_MIN_ELTS = NumMinElts]
[,TPOOL_NTHREADS = NumThreads] [,/VECTOR_ENABLE]

Keywords

TPOOL_MAX_ELTS

This keyword specifies the maximum number of data elements for computations that
use the thread pool. This keyword changes the value returned by
!CPU.TPOOL_MAX_ELTS. If the memory required for a given computation fits in
physical memory, using the thread pool typically provides an increase in speed
compared to the single-threaded case. However, once the computation exceeds the
ability of the system’s physical memory to contain it, use of the thread pool can be
slower than the single-threaded case as the threads end up vying for access to system
memory. If the system variable !CPU.TPOOL_MAX_ELTS is non-zero, IDL will not
use the thread pool for any computation involving more than that number of
elements. The default for this value is 0, meaning no imposed limit.

TPOOL_MIN_ELTS

This keyword sets the minimum number of data elements for a computation that are
necessary before IDL will use the thread pool. For fewer than TPOOL_MIN_ELTS,
the main IDL thread will perform the computation without using the thread pool. It is
important not to use the thread pool for small tasks since the overhead of using the
thread pool will not be offset by the overhead incurred by operation of the thread
pool, and the performance of the computation will be slower than if the thread pool
was not used.

TPOOL_NTHREADS

This keyword sets the number of threads that IDL will use in thread pool
computations. The default is to use !CPU.HW_NCPU threads, so that each thread
will have the potential to run in parallel with the others. If you set
TPOOL_NTHREADS to 0, !CPU.HW_NCPU threads will be used. Setting this
keyword to 1 disables threading. For numerical computation, there is no benefit to
CPU What’s New in IDL 5.5

Chapter 6: New IDL Routines 195
using more threads than your system has CPUs. However, depending on the size of
the problem and the number of other programs running on the system, there may be a
performance advantage to using fewer CPUs.

VECTOR_ENABLE

Set this keyword to enable use of the system’s vector unit (e.g. Macintosh
Altivec/Velocity Engine). Set it to zero to disable such use. This keyword is ignored
if the current system does not support a vector unit, which can be determined by the
value of the !CPU.HW_VECTOR system variable.

Example

In the following example, we will:

• Save the current thread pool settings from the !CPU system environment
variable.

• Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a floating point computation.

• Perform a floating point computation.

• Modify the thread pool settings so that IDL is configured, for our particular
system, to efficiently perform a double precision computation.

• Perform a double precision computation.

• Restore the thread pool settings to their original values.

The first computation will use the thread pool since it does not exceed any of the
specified parameters. The second computation, since it exceeds the maximum
number of data elements, will not use the thread pool:

; Retrieve the current thread pool settings.
threadpool = !CPU

; Modify the thread pool settings.
CPU, TPOOL_MAX_ELTS = 1000000, TPOOL_MIN_ELTS = 50000, $

TPOOL_NTHREADS = 2

; Create 65,341 elements of floating point data.
theta = FINDGEN(361, 181)

; Perform computation, using 2 threads.
sineSquared = 1. - (COS(!DTOR*theta))^2

; Modify thread pool settings for new data type.
CPU, TPOOL_MAX_ELTS = 50000, TPOOL_MIN_ELTS = 10000
What’s New in IDL 5.5 CPU

196 Chapter 6: New IDL Routines
; Create 65,341 elements of double precision data
theta = DINDGEN(361, 181)

; Perform computation.
sineSquared = 1. - (COS(!DTOR*theta))^2

;Return thread pool settings to their initial values.
CPU, TPOOL_MAX_ELTS = threadpool.TPOOL_MAX_ELTS, $

TPOOL_MIN_ELTS = threadpool.TPOOL_MIN_ELTS, $
TPOOL_NTHREADS = threadpool.HW_NCPU

See Also

!CPU, “Controlling the Thread Pool Settings for a Session or Group of
Computations” on page 129
CPU What’s New in IDL 5.5

Chapter 6: New IDL Routines 197
DEFINE_MSGBLK

The DEFINE_MSGBLK procedure defines and loads a new message block into the
currently running IDL session. Once loaded, the MESSAGE procedure can be used
to issue messages from this block.

A message block is a collection of messages that are loaded into IDL as a single unit.
Each block contains the messages required for a specific application. At startup, IDL
contains a single internal message block named IDL_MBLK_CORE, which contains
the standard messages required by the IDL system. Dynamically loadable modules
(DLMs) usually define additional message blocks for their own needs when they are
loaded. At the IDL programming level, the DEFINE_MSGBLK or
DEFINE_MSGBLK_FROM_FILE procedures can be used to define message blocks.
You can use the HELP, /MESSAGES command to see the currently defined message
blocks.

Syntax

DEFINE_MSGBLK, BlockName, ErrorNames, ErrorFormats
[,/IGNORE_DUPLICATE] [,PREFIX = PrefixStr]

Arguments

BlockName

A string giving the name of the message block to be defined. Block names must be
unique within the IDL system. We recommend that you follow the advice given in
“Advice for Library Authors” in Chapter 12 of the Building IDL Applications manual
when selecting this name in order to avoid name conflicts. Use of the PREFIX
keyword is also recommended to enforce a consistent naming convention.

ErrorNames

An array of strings giving the names of the messages to be defined with the message
block.

ErrorFormats

An array of strings giving the formats for the messages to be defined with the
message block. Each format is matched with the corresponding name in ErrorNames.
For this reason, ErrorFormats should have the same number of elements as
ErrorNames. We recommend the use of the PREFIX keyword to enforce a consistent
naming scheme for your messages.
What’s New in IDL 5.5 DEFINE_MSGBLK

198 Chapter 6: New IDL Routines
Error formats are simplified printf -style format strings. For more information on
format strings, see “C printf-Style Quoted String Format Code” in Chapter 8 of the
Building IDL Applications manual.

Keywords

IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error is issued and
execution continues. The original message block remains installed and available for
use.

PREFIX

It is a common and recommended practice to give each message name defined in
ErrorNames a common unique prefix that identifies it as an error from a specific
message block. However, specifying this prefix in each entry of ErrorNames is
tedious and error prone. The PREFIX keyword can be used to specify a prefix string
that will be added to each element of ErrorNames.

Example

This example defines a message block called ROADRUNNER that contains 2
messages:

name = ['BADPLAN', 'RRNOTCAUGHT']
fmt = ['Bad plan detected: %s.', 'Road Runner not captured.']
DEFINE_MSGBLK, prefix = 'ACME_M_', 'ROADRUNNER', name, fmt

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acme_m_badplan', BLOCK = 'roadrunner', $
'Exploding bridge while standing underneath'

This MESSAGE statement produces the output similar to:

% Bad plan detected: Exploding bridge while standing underneath.
% Execution halted at: $MAIN$

The IDL command:

HELP, /STRUCTURES, !ERROR_STATE

can be used to examine the effect of this message on IDL’s error state.
DEFINE_MSGBLK What’s New in IDL 5.5

Chapter 6: New IDL Routines 199
See Also

DEFINE_MSGBLK_FROM_FILE, MESSAGE
What’s New in IDL 5.5 DEFINE_MSGBLK

200 Chapter 6: New IDL Routines
DEFINE_MSGBLK_FROM_FILE

The DEFINE_MSGBLK_FROM_FILE procedure reads the definition of a message
block from a file, and uses DEFINE_MSGBLK to load it into the currently running
IDL session. Once loaded, the MESSAGE procedure can be used to issue messages
from this block.

DEFINE_MSGBLK_FROM_FILE can be more convenient than
DEFINE_MSGBLK for large message blocks.

This routine is written in the IDL language. Its source code can be found in the file
define_msgblk_from_file.pro in the lib subdirectory of the IDL distribution.

Syntax

DEFINE_MSGBLK_FROM_FILE, Filename [,BLOCK = BlockName]
[, /IGNORE_DUPLICATE] [,PREFIX = PrefixStr] [,/VERBOSE]

Arguments

Filename

The name of the file containing the message block definition. The contents of this file
must be formatted as described in the section “Format of Message Definition Files”
which follows.

Keywords

BLOCK

If present, specifies the name of the message block. Normally, this keyword is not
specified, and an @IDENT line in the message file specifies the name of the block.
We recommend that you follow the advice given in “Advice for Library Authors” in
Chapter 12 of the Building IDL Applications manual when selecting this name in
order to avoid name clashes. Use of a prefix is also recommended to enforce a
consistent naming convention.

IGNORE_DUPLICATE

Attempts to define a given BlockName more than once in the same IDL session
usually cause DEFINE_MSGBLK to issue an error and stop execution of the IDL
program. Specify IGNORE_DUPLICATE to cause DEFINE_MSGBLK to quietly
ignore attempts to redefine a message block. In this case, no error is issued and
DEFINE_MSGBLK_FROM_FILE What’s New in IDL 5.5

Chapter 6: New IDL Routines 201
execution continues. The original message block remains installed and available for
use.

PREFIX

If present, specifies a prefix string to be applied to the beginning of each message
name in the message block. Normally, this keyword is not specified, and an
@PREFIX line in the message file specifies the prefix string. We recommend the use
of a prefix to enforce a consistent naming scheme for your messages.

VERBOSE

If set, causes DEFINE_MSGBLK_FROM_FILE to print informational messages
describing the message block loaded.

Format of Message Definition Files

A message definition file has a simple structure designed to ease the specification of
message blocks. Any line starting with the character @ specifies information about
the message block. Any line not starting with an @ character is ignored, and can be
used for comments, documentation, notes, or other human readable information. All
such text is ignored by DEFINE_MSGBLK_FROM_FILE.

There are three different types of lines starting with @ allowed in a message
definition file:

@IDENT name

Specifies the name of the message block being defined. There should be exactly one
such line in every message definition file. If the BLOCK keyword to
DEFINE_MSGBLK_FROM_FILE is specified, the @IDENT line is ignored and can
be omitted. RSI recommends always specifying an @IDENT line.

@PREFIX PrefixStr

If present, specifies a prefix string to be applied to the beginning of each message
name in the message block. There should be at most one such line in every message
definition file. If the PREFIX keyword to DEFINE_MSGBLK_FROM_FILE is
specified, the @PREFIX line is ignored and can be omitted. RSI recommends always
specifying an @PREFIX line.

@ MessageName MessageFormat

Specifies a single message name and format string pair. The format string should be
delimited with double quotes. A message definition file should contain one such line
for every message it defines.
What’s New in IDL 5.5 DEFINE_MSGBLK_FROM_FILE

202 Chapter 6: New IDL Routines
Example

The following example uses the same message block as in the example given for
“DEFINE_MSGBLK” on page 197, but uses a message definition file to create the
message block. The first step is to create a message definition file called
roadruner.msg containing the following lines:

; Message definition file for ROADRUNNER message block
@IDENT roadrunner
@PREFIX ACME_M_
@ BADPLAN "Bad plan detected: %s."
@ RRNOTCAUGHT "Road Runner not captured."

If you are currently in IDL, exit out and restart. Then, within IDL, you can use the
following statement to load in the message block:

DEFINE_MSGBLK_FROM_FILE, 'roadrunner.msg'

Once this message block is loaded, the ACME_M_BADPLAN message can be
issued using the following statement:

MESSAGE, NAME = 'acme_m_badplan', BLOCK='roadrunner', $
'Exploding bridge while standing underneath'

This MESSAGE statement produces the output similar to:

% Bad plan detected: Exploding bridge while standing underneath.
% Execution halted at: $MAIN$

The IDL command:

HELP, /STRUCTURES, !ERROR_STATE

can be used to examine the effect of this message on IDL’s error state.

See Also

DEFINE_MSGBLK, MESSAGE
DEFINE_MSGBLK_FROM_FILE What’s New in IDL 5.5

Chapter 6: New IDL Routines 203
ERF

The ERF function returns the value of the error function:

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as X. The ERF
function does not work with complex arguments.

Syntax

Result = ERF(X)

Arguments

X

The expression for which the error function is to be evaluated.

Example

To find the error function of 0.4 and print the result, enter:

PRINT, ERF(0.4D)

IDL prints:

0.42839236

See Also

ERFC, ERFCX, GAMMA, IGAMMA, EXPINT

erf x()
2

π
------- e

t2–
td

0

x

�=
What’s New in IDL 5.5 ERF

204 Chapter 6: New IDL Routines
ERFC

The ERFC function returns the value of the complimentary error function:

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as X. The ERFC
function does not work with complex arguments.

Syntax

Result = ERFC(X)

Arguments

X

The expression for which the complimentary error function is to be evaluated.

Example

To find the complimentary error function of 0.4 and print the result, enter:

PRINT, ERFC(0.4D)

IDL prints:

0.57160764

See Also

ERF, ERFCX

erfc x() 1 erf x()–
2

π
------- e

t22
–

td

x

∞

�= =
ERFC What’s New in IDL 5.5

Chapter 6: New IDL Routines 205
ERFCX

The ERFCX function returns the value of the scaled complimentary error function:

The result is double-precision if the argument is double-precision, otherwise the
result is floating-point. The result always has the same structure as X. The ERFCX
function does not work with complex arguments.

Syntax

Result = ERFCX(X)

Arguments

X

The expression for which the complimentary error function is to be evaluated.

Example

To find the scaled complimentary error function of 0.4 and print the result, enter:

PRINT, ERFCX(0.4D)

IDL prints:

0.67078779

See Also

ERF, ERFC

erfcx x() e
x2

erfc x()=
What’s New in IDL 5.5 ERFCX

206 Chapter 6: New IDL Routines
FILE_INFO

The FILE_INFO function returns status information about a specified file.

Syntax

Result = FILE_INFO(Path, /NOEXPAND_PATH)

Return Value

The FILE_INFO function returns a structure expression of type FILE_INFO
containing status information about a specified file or files. The result will contain
one structure for each input element.

Fields of the FILE_INFO Structure

The following descriptions are of fields in the structure returned by the FILE_INFO
function. They are not keywords to FILE_INFO.

• NAME — The name of the file.

• EXISTS — True (1) if the file exists. False (0) if it does not exist.

• READ — True (1) if the file is exists and is readable by the user. False (0) if it
is not readable.

• WRITE — True (1) if the file exists and is writable by the user. False (0) if it
is not writable.

• EXECUTE — True (1) if the file exists and is executable by the user. False (0)
if it is not executable. The source of this information differs between operating
systems:

UNIX and VMS: IDL checks the per-file information (the execute bit)
maintained by the operating system.

Microsoft Windows: The determination is made on the basis of the file
name extension (e.g. .exe).

Macintosh: Files of type APPL (proper applications) are reported as
executable; this corresponds to Double Clickable applications.

• REGULAR — True (1) if the file exists and is a regular disk file and not a
directory, pipe, socket, or other special file type. False (0) if it is not a regular
disk file (it maybe a directory, pipe, socket, or other special file type).
FILE_INFO What’s New in IDL 5.5

Chapter 6: New IDL Routines 207
• DIRECTORY — True (1) if the file exists and is a directory. False (0) if it is
not a directory.

• BLOCK_SPECIAL — True (1) if the file exists and is a UNIX block special
device. On non-UNIX operating systems, this field will always be False (0).

• CHARACTER_SPECIAL — True (1) if the file exists and is a UNIX
character special device. On non-UNIX operating systems, this field will
always be False (0).

• NAMED_PIPE — True (1) if the file exists and is a UNIX named pipe (fifo)
device. On non-UNIX operating systems, this field will always be False (0).

• SETGID — True (1) if the file exists and has its Set-Group-ID bit set. On non-
UNIX operating systems, this field will always be False (0).

• SETUID — True (1) if the file exists and has its Set-User-ID bit set. On non-
UNIX operating systems, this field will always be False (0).

• SOCKET — True (1) if the file exists and is a UNIX domain socket. On non-
UNIX operating systems, this field will always be False (0).

• STICKY_BIT — True (1) if the file exists and has its sticky bit set. On non-
UNIX operating systems, this field will always be False (0).

• SYMLINK — True (1) if the file exists and is a UNIX symbolic link. On non-
UNIX operating systems, this field will always be False (0).

• DANGLING_SYMLINK — True (1) if the file exists and is a UNIX
symbolic link that points at a non-existent file. On non-UNIX operating
systems, this field will always be False (0).

• ATIME, CTIME, MTIME — The date of last access, date of creation, and
date of last modification given in seconds since 1 January 1970 UTC. Use the
SYSTIME function to convert these dates into a textual representation.

Note
Some file systems do not maintain all of these dates (e.g. MS DOS FAT file
systems), and may return 0. On some non-UNIX operating systems, access time is
not maintained, and ATIME and MTIME will always return the same date.

• SIZE — The current length of the file in bytes. If Path is not to a regular file
(possibly to a directory, pipe, socket, or other special file type), the value of
SIZE will not contain any useful information.
What’s New in IDL 5.5 FILE_INFO

208 Chapter 6: New IDL Routines
Arguments

Path

The path of the file about which information is required. This parameter can be a
scalar or array of type string.

Keywords

NOEXPAND_PATH

If specified, FILE_INFO uses Path exactly as specified, without applying the usual
file path expansion.

Examples

To get information on the file dist.pro within the IDL User Library:

HELP,/STRUCTURE, FILE_INFO(FILEPATH('dist.pro', $
SUBDIRECTORY = 'lib'))

Executing the above command will produce output similar to:

** Structure FILE_INFO, 21 tags, length=72:
NAME STRING '/usr/local/rsi/idl/lib/dist.pro'
EXISTS BYTE 1
READ BYTE 1
WRITE BYTE 0
EXECUTE BYTE 0
REGULAR BYTE 1
DIRECTORY BYTE 0
BLOCK_SPECIAL BYTE 0
CHARACTER_SPECIAL

BYTE 0
NAMED_PIPE BYTE 0
SETGID BYTE 0
SETUID BYTE 0
SOCKET BYTE 0
STICKY_BIT BYTE 0
SYMLINK BYTE 0
DANGLING_SYMLINK

BYTE 0
MODE LONG 420
ATIME LONG64 970241431
CTIME LONG64 970241595
MTIME LONG64 969980845
SIZE LONG64 1717
FILE_INFO What’s New in IDL 5.5

Chapter 6: New IDL Routines 209
See Also

FILE_TEST, FSTAT
What’s New in IDL 5.5 FILE_INFO

210 Chapter 6: New IDL Routines
FILE_SEARCH

The FILE_SEARCH function returns a string array containing the names of all files
matching the input path specification. Input path specifications may contain wildcard
characters, enabling them to match multiple files. All matched filenames are returned
in a string array, one file name per array element. If no files exist with names
matching the input arguments, a null scalar string is returned instead of a string array.
FILE_SEARCH has the ability to perform standard, or recursive searching:

• Standard: When called with a single Path_Specification argument,
FILE_SEARCH returns all files that match that specification. This is the same
operation, sometimes referred to as file globbing, performed by most operating
system command interpreters when wildcard characters are used in file
specifications.

• Recursive: When called with two arguments, FILE_SEARCH performs
recursive searching of directory hierarchies. In a recursive search,
FILE_SEARCH looks recursively for any and all subdirectories in the file
hierarchy rooted at the Dir_Specification argument. Within each of these
subdirectories, it returns the names of all files that match the pattern in the
Recur_Pattern argument. This operation is similar to that performed by the
UNIX find(1) command.

Note
To avoid going into an infinite loop, the FILE_SEARCH routine does not search for
files designated by symbolic links.

A relative path is a file path that can only be unambiguously interpreted by basing it
relative to some other known location. Usually, this location is the current working
directory for the process. A fully qualified path is a complete and unambiguous path
that can be interpreted directly. For example, bin/idl is a relative path, while
/usr/local/rsi/idl/bin/idl is a fully qualified path. By default,
FILE_SEARCH follows the format of the input to decide the form of returned paths.
If the input is relative, the results will be relative. If the input is fully qualified, the
results will also be fully qualified. If you specify the FULLY_QUALIFY_PATH
keyword, the results will be fully qualified no matter which form of input is used.

The wildcards understood by FILE_SEARCH are based on those used by standard
UNIX tools. They are described in the “Supported Wildcards and Expansions” on
page 218.
FILE_SEARCH What’s New in IDL 5.5

Chapter 6: New IDL Routines 211
Note
Research Systems strongly recommends the FILE_SEARCH function be used
rather than the FINDFILE function. FILE_SEARCH is ultimately intended as a
replacement for FINDFILE.

Syntax

Result = FILE_SEARCH(Path_Specification)

or for recursive searching,

Result = FILE_SEARCH(Dir_Specification, Recur_Pattern)

Keywords: [, COUNT=variable] [, /EXPAND_ENVIRONMENT]
[, /EXPAND_TILDE] [, /FOLD_CASE] [, /FULLY_QUALIFY_PATH]
[, /ISSUE_ACCESS_ERROR] [, /MARK_DIRECTORY]
[, /MATCH_INITIAL_DOT | /MATCH_ALL_INITIAL_DOT] [, /NOSORT]
[, /QUOTE] [, /TEST_DIRECTORY] [, /TEST_EXECUTABLE]
[, /TEST_READ] [, /TEST_REGULAR] [, /TEST_WRITE]
[, /TEST_ZERO_LENGTH]

UNIX-Only Keywords: [, /TEST_BLOCK_SPECIAL]
[, /TEST_CHARACTER_SPECIAL] [, /TEST_DANGLING_SYMLINK]
[, /TEST_GROUP] [, /TEST_NAMED_PIPE] [, /TEST_SETGID]
[, /TEST_SETUID] [, /TEST_SOCKET] [, /TEST_STICKY_BIT]
[, /TEST_SYMLINK] [, /TEST_USER]

Arguments

Any of the arguments described in this section can contain wildcard characters, as
described in the Supported Wildcards and Expansions section below.

Path_Specification

A scalar or array variable of string type, containing file paths to match. If
Path_Specification is not supplied, or if it is supplied as a null string, FILE_SEARCH
uses a default pattern of * and matches all files in the current directory.

Dir_Specification

A scalar or array variable of string type, containing directory paths within which
FILE_SEARCH will perform recursive searching for files matching the
Recur_Pattern argument. FILE_SEARCH examines Dir_Specification, and any
directory found below it, and returns the paths of any files in those directories that
What’s New in IDL 5.5 FILE_SEARCH

212 Chapter 6: New IDL Routines
match Recur_Pattern. If Dir_Specification is supplied as a null string,
FILE_SEARCH searches the current directory.

Recur_Pattern

A scalar string containing a pattern for files to match in any of the directories
specified by the Dir_Specification argument. If Recur_Pattern is supplied as a null
string, FILE_SEARCH uses a default pattern of * and matches all files in the
specified directories.

Keywords

COUNT

A named variable into which the number of files found is placed. If no files are
found, a value of 0 is returned.

EXPAND_ENVIRONMENT

By default, FILE_SEARCH follows the conventions of the underlying operating
system to determine if it expands environment variable references in input file
specification patterns. The default is to do such expansions under UNIX, and not to
do them on the Macintosh or Microsoft Windows. The EXPAND_ENVIRONMENT
keyword is used to change this behavior. Set it to a non-zero value to cause
FILE_SEARCH to perform environment variable expansion on all platforms. Set it to
zero to disable such expansion.

Note
Macintosh users should note that the Macintosh operating system does not support
the concept of an environment, and as such, environment variable expansion is
likely to be of little use. One significant exception to this is to use the
IDL_TMPDIR environment variable to generate paths to temporary files. See the
description of the GETENV function for further details.

The syntax for expanding environment variables in an input file pattern is based on
that supported by the standard UNIX shell (/bin/sh), as described in the Supported
Wildcards and Expansions section below.

EXPAND_TILDE

Users of the UNIX C-shell (/bin/csh), and other tools influenced by it, are familiar
with the use of a tilde (~) character at the beginning of a path to denote a home
directory. A tilde by itself at the beginning of the path (e.g. ~/directory/file) is
FILE_SEARCH What’s New in IDL 5.5

Chapter 6: New IDL Routines 213
equivalent to the home directory of the user executing the command, while a tilde
followed by the name of a user (e.g. ~user/directory/file) is expanded to the
home directory of the named user.

By default, FILE_SEARCH follows the conventions of the underlying operating
system in deciding whether to expand a leading tilde or to treat it as a literal character.
Hence, the default is to expand them under UNIX, and not on Macintosh or Microsoft
Windows. The EXPAND_TILDE keyword is used to change this behavior.

Set it to zero to disable tilde expansion on all platforms. Set it to a non-zero value to
enable tilde expansion.

Note
Microsoft Windows users should note that only the plain form of tilde is recognized
by Windows IDL. Attempts to use the ~user form will cause IDL to issue an error.
IDL uses the HOME and HOMEPATH environment variables to obtain a home
directory for the current Windows user.

Note
Macintosh users should note that the FILE_SEARCH quietly ignores the
EXPAND_TILDE keyword. There is no support for tilde expansion on that
platform.

FOLD_CASE

By default, FILE_SEARCH follows the case sensitivity policy of the underlying
operating system. Matches are case sensitive on UNIX platforms, and case
insensitive on Macintosh and Microsoft Windows platforms. The FOLD_CASE
keyword is used to change this behavior. Set it to a non-zero value to cause
FILE_SEARCH to do all file matching case insensitively. Set to zero to cause all file
matching to be case sensitive.

FULLY_QUALIFY_PATH

If set, FILE_SEARCH expands all returned file paths so that they are complete.
Under UNIX, this means that all files are specified relative to the root of the file
system. On Macintosh and Windows platforms, it means that all files are specified
relative to the Drive/Volume on which they are located. By default, FILE_SEARCH
returns fully qualified paths when the input specification is fully qualified, and
returns relative paths otherwise. For example:
What’s New in IDL 5.5 FILE_SEARCH

214 Chapter 6: New IDL Routines
CD, '/usr/local/rsi/idl/bin'
PRINT, FILE_SEARCH('idl')
idl
PRINT, FILE_SEARCH('idl',/FULLY_QUALIFY_PATH)
/usr/local/rsi/idl/bin/idl

Under Microsoft Windows, any use of a drive letter colon (:) character implies full
qualification, even if the path following the colon does not start with a slash
character.

ISSUE_ACCESS_ERROR

If the IDL process lacks the necessary permission to access a directory included in
the input specification, FILE_SEARCH will normally skip over it quietly and not
include it in the generated results. Set ISSUE_ACCESS_ERROR to cause an error to
be issued instead.

MARK_DIRECTORY

If set, all directory paths are returned with a path separator character appended to the
end. This allows the caller to concatenate a file name directly to the end without
having to supply a separator character first. This is convenient for cross-platform
programming, as the separator characters differ between operating systems:

PRINT, FILE_SEARCH(!DIR)
/usr/local/rsi/idl
PRINT, FILE_SEARCH(!DIR, /MARK_DIRECTORY)
/usr/local/rsi/idl/

MATCH_ALL_INITIAL_DOT

By default, wildcards do not match leading dot (.) characters, and FILE_SEARCH
does not return the names of files that start with the dot (.) character unless the
leading dot is actually contained within the search string. Set
MATCH_ALL_INITIAL_DOT to change this policy so that wildcards will match all
files starting with a dot, including the special “.” (current directory) and “..” (parent
directory) entries. RSI recommends the use of the MATCH_INITIAL_DOT keyword
instead of MATCH_ALL_INITIAL_DOT for most purposes.

MATCH_INITIAL_DOT

MATCH_INITIAL_DOT serves the same function as
MATCH_ALL_INITIAL_DOT, except that the special “.” (current directory) and “..”
(parent directory) directories are not included.
FILE_SEARCH What’s New in IDL 5.5

Chapter 6: New IDL Routines 215
NOSORT

If set, FILE_SEARCH will not sort the resulting files. On some operating systems,
particularly UNIX, this can make FILE_SEARCH execute faster. By default,
FILE_SEARCH sorts the results from each element of the input file specification
together, and places the results from each input element into the result in the order
they are found. Hence, the statement:

Result = FILE_SEARCH(['*.c', '*.h'])

returns all of the C files in the current directory in lexical order, followed by all of the
H files, also sorted lexically among themselves. In contrast, the statement:

Result = FILE_SEARCH('*.[ch]')

returns all of the C and H files sorted together into lexical order. This version is more
efficient that the previous one, because the directory is only searched once.

QUOTE

FILE_SEARCH usually treats all wildcards found in the input specification as having
the special meanings described in “Supported Wildcards and Expansions” on
page 218. This means that such characters cannot normally be used as plain literal
characters in file names. For example, it is not possible to match a file that contains a
literal asterisk character in its name because asterisk is interpreted as the “match zero
or more characters” wildcard.

If the QUOTE keyword is set, the backslash character can be used to escape any
character so that it is treated as a plain character with no special meaning. In this
mode, FILE_SEARCH replaces any two character sequence starting with a backslash
with the second character of the pair. In the process, any special wildcard meaning
that character might have had disappears, and the character is treated as a literal.

If QUOTE is set, any literal backslash characters in your path must themselves be
escaped with a backslash character. This is especially important for Microsoft
Windows users, because the directory separator character for that platform is the
backslash. Windows IDL also accepts UNIX-style forward slashes for directory
separators, so Windows users have two choices in handling this issue:

Result = FILE_SEARCH('C:\\home\\bob*.dat', /QUOTE)
Result = FILE_SEARCH('C:/home/bob/*.dat', /QUOTE)

TEST_DIRECTORY

Only include a matching file if it is a directory.
What’s New in IDL 5.5 FILE_SEARCH

216 Chapter 6: New IDL Routines
TEST_EXECUTABLE

Only include a matching file if it is executable. The source of this information differs
between operating systems:

UNIX: IDL checks the per-file information (the execute bit) maintained
by the operating system.

Microsoft Windows: The determination is made on the basis of the file
name extension (e.g. .exe).

Macintosh: Files of type APPL (proper applications) are reported as
executable; this corresponds to double-clickable applications.

TEST_READ

Only include a matching file if it is readable by the user.

Note
This keyword does not support Access Control Listing (ACL) settings for files.

TEST_REGULAR

Only include a matching file if it is a regular disk file and not a directory, pipe,
socket, or other special file type.

TEST_WRITE

Only include a matching file if it is writable by the user.

Note
This keyword does not support Access Control Listing (ACL) settings for files.

TEST_ZERO_LENGTH

Only include a matching file if it has zero length.

Note
The length of a directory is highly system dependent and does not necessarily
correspond to the number of files it contains. In particular, it is possible for an
empty directory to report a non-zero length. RSI does not recommend using the
TEST_ZERO_LENGTH keyword on directories, as the information returned
cannot be used in a meaningful way.
FILE_SEARCH What’s New in IDL 5.5

Chapter 6: New IDL Routines 217
UNIX-Only Keywords

TEST_BLOCK_SPECIAL

Only include a matching file if it is a block special device.

TEST_CHARACTER_SPECIAL

Only include a matching file if it is a character special device.

TEST_DANGLING_SYMLINK

Only include a matching file if it is a symbolic link that points at a non-existent file.

TEST_GROUP

Only include a matching file if it belongs to the same effective group ID (GID) as the
IDL process.

TEST_NAMED_PIPE

Only include a matching file if it is a named pipe (fifo) device.

TEST_SETGID

Only include a matching file if it has its Set-Group-ID bit set.

TEST_SETUID

Only include a matching file if it has its Set-User-ID bit set.

TEST_SOCKET

Only include a matching file if it is a UNIX domain socket.

TEST_STICKY_BIT

Only include a matching file if it has its sticky bit set.

TEST_SYMLINK

Only include a matching file if it is a symbolic link that points at an existing file.

TEST_USER

Only include a matching file if it belongs to the same effective user ID (UID) as the
IDL process.
What’s New in IDL 5.5 FILE_SEARCH

218 Chapter 6: New IDL Routines
Supported Wildcards and Expansions

The wildcards understood by FILE_SEARCH are based on those used by the
standard UNIX shell /bin/sh (*?[], environment variables) with some
enhancements commonly found in the C-shell /bin/csh (~ and {}). These
wildcards are processed identically across all IDL supported platforms. The
supported wildcards are shown in the following table:

Wildcard Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of
characters separated by “-” matches any character lexically
between the pair, inclusive. If the first character following the
opening bracket ([) is a ! or ^, any character not enclosed is
matched.

{str, str, ...} Expand to each string (or filename-matching pattern) in the
comma-separated list.

~

~user

If used at start of input file specification, is replaced with the
path to the appropriate home directory. See the description of
the EXPAND_TILDE keyword for details.

$var Replace with value of named environment variable. See the
description of the EXPAND_ENVIRONMENT keyword for
full details.

${var} Replace ${var} with the value of the var environment
variable. If var is not found in the environment, ${var} is
replaced with a null string. This format is useful when the
environment variable reference sits directly next to unrelated
text, as the use of the {} brackets make it possible for IDL to
determine where the environment variable ends and the
remaining text starts (e.g. ${mydir} other text).

${var:-alttext} If environment variable var is present in the environment and
has a non-NULL value, then substitute that value. If var is not
present, or has a NULL value, then substitute the alternative
text (alttext) provided instead.

Table 6-1: Supported Wildcards and Expansions
FILE_SEARCH What’s New in IDL 5.5

Chapter 6: New IDL Routines 219
These wildcards can appear anywhere in an input file specification, with the
following exceptions:

Tilde (~)

The tilde character is only considered to be a wildcard if it is the first character in the
input file specification, and only if allowed by the EXPAND_TILDE keyword.
Otherwise, it is treated as a regular character.

Microsoft Windows UNC Paths

On a local area network, Microsoft Windows offers an alternative to the drive letter
syntax for accessing files. The Universal Naming Convention allows specifying paths
on other hosts, using the syntax:

\\hostname\sharename\dir\dir\Ž...\file

UNC paths are distinguished from normal paths by the use of two initial slashes in
the path. FILE_SEARCH can process such paths, but wildcard characters are not
allowed in the hostname or sharename segments. Wildcards are allowed for
specifying directories and files. For performance reasons, RSI does not recommend
using the recursive form of FILE_SEARCH with UNC paths on very large directory
trees.

When using FILE_SEARCH, you should be aware of the following issues:

Initial Dot Character

The default is for wildcards not to match the dot (.) character if it occurs as the first
character of a directory or file name. This follows the convention of UNIX shells,
which treat such names as hidden files. In order to match such files, you can take any
of the following actions:

• Explicitly include the dot character at the start of your pattern (e.g. “.*”).

${var-alttext} If environment variable var is present in the environment
(even if it has a NULL value) then substitute that value. If var
is not present, then substitute the alternative text (alttext)
provided instead.

Wildcard Description

Table 6-1: Supported Wildcards and Expansions (Continued)
What’s New in IDL 5.5 FILE_SEARCH

220 Chapter 6: New IDL Routines
• Specify the MATCH_INITIAL_DOT keyword, which changes the dot
matching policy so that wildcards will match any names starting with dot
(except for the special “.” and “..” directories).

• Specify the MATCH_ALL_INITIAL_DOT keyword, which changes the dot
matching policy so that wildcards will match any names starting with dot
(including the special “.” and “..” directories).

File Path Syntax

The syntax allowed for file paths differs between operating systems. FILE_SEARCH
always processes file paths using the syntax rules for the platform on which the IDL
session is running. As a convenience for Microsoft Windows users, Windows IDL
accepts UNIX style forward slashes as well as the usual backslashes as path
separators.

Differing Defaults Between Platforms

The different operating systems supported by IDL have some conventions for
processing file paths that are inherently incompatible. If FILE_SEARCH attempted
to force an identical default policy for these features across all platforms, the
resulting routine would be inconvenient to use on all platforms. FILE_SEARCH
resolves this inherent tension between convenience and control in the following way:

• These features are controlled by keywords which are listed in the table below.
If a keyword is not explicitly specified, FILE_SEARCH will determine an
appropriate default for that feature based on the conventions of the underlying
operating system. Hence, FILE_SEARCH will by default behave in a way that
is reasonable on the platform it is used on.

• If one of these keywords is explicitly specified, FILE_SEARCH will use its
value to determine support for that feature. Hence, if the keyword is used,
FILE_SEARCH will behave identically on all platforms. If maximum cross-
platform control is desired, you can achieve it by specifying all the relevant
keywords.
FILE_SEARCH What’s New in IDL 5.5

Chapter 6: New IDL Routines 221
The keywords that have different defaults on different platforms are listed in the
following table:

TEST_* Keywords

The keywords with names that start with the TEST_ prefix allow you to filter the list
of resulting file paths based on various criteria. If you remove the TEST_ prefix from
these keywords, they correspond directly to the same keywords to the FILE_TEST
function, and are internally implemented by the same test code. One could therefore
use FILE_TEST instead of the TEST_ keywords to FILE_SEARCH. For example,
the following statement locates all subdirectories of the current directory:

Result = FILE_SEARCH(/TEST_DIRECTORY)

It is equivalent to the following statements, using FILE_TEST:

result = FILE_SEARCH()
idx = where(FILE_TEST(result, /DIRECTORY), count)
result = (count eq 0) ? '' : result[idx]

The TEST_* keywords are more succinct, and can be more efficient in the common
case in which FILE_SEARCH generates a long list of results, only to have
FILE_TEST discard most of them.

Examples

Example 1

Find all files in the current working directory:

Result = FILE_SEARCH()

Wildcard Keyword
Default

Mac
Default
UNIX

Default
Win

$var
${var}
${var:-alttext}
${var-alttext}

EXPAND_ENVIRONMENT no yes no

~ EXPAND_TILDE no yes no

FOLD_CASE yes no yes

Table 6-2: Differing Defaults on Different Platforms
What’s New in IDL 5.5 FILE_SEARCH

222 Chapter 6: New IDL Routines
Example 2

Find all IDL program (*.pro) files in the current working directory:

Result = FILE_SEARCH('*.pro')

Example 3

Under Microsoft Windows, find all files in the top level directories of all drives other
than the floppy drives:

Result=FILE_SEARCH('[!ab]:*')

This example relies on the following:

• FILE_SEARCH allows wildcards within the drive letter part of an input file
specification.

• Drives A and B are always floppies, and are not used by Windows for any
other type of drive.

Example 4

Find all files in the user’s home directory that start with the letters A-D. Match both
upper and lowercase letters:

Result = FILE_SEARCH('~/[a-d]*', /EXPAND_TILDE, /FOLD_CASE)

Example 5

Find all directories in the user’s home directory that start with the letters A-D. Match
both upper and lowercase letters:

Result = FILE_SEARCH('~/[a-d]*', /EXPAND_TILDE, /FOLD_CASE, $
/TEST_DIRECTORY)

Example 6

Recursively find all subdirectories found underneath the user’s home directory that
do not start with a dot character:

Result = FILE_SEARCH('$HOME', '*', /EXPAND_ENVIRONMENT, $
/TEST_DIRECTORY)
FILE_SEARCH What’s New in IDL 5.5

Chapter 6: New IDL Routines 223
Example 7

Recursively find all subdirectories found underneath the user’s home directory,
including those that start with a dot character, but excluding the special “.” and “..”
directories:

Result = FILE_SEARCH('$HOME', '*', /MATCH_INITIAL_DOT, $
/EXPAND_ENVIRONMENT, /TEST_DIRECTORY)

Example 8

Find all .pro and .sav files in a UNIX IDL library search path, sorted by directory, in
the order IDL searches for them:

Result = FILE_SEARCH(STRSPLIT(!PATH, ':', /EXTRACT) + $
'/*.{pro,sav}')

Colon (:) is the UNIX path separator character, so the call to STRSPLIT breaks the
IDL search path into an array of directories. To each directory name, we concatenate
the wildcards necessary to match any .pro or .sav files in that directory. When this
array is passed to FILE_SEARCH, it locates all files that match these specifications.
FILE_SEARCH sorts all of the files found by each input string. The files for each
string are then placed into the output array in the order they were searched for.

Example 9

Recursively find all directories in your IDL distribution:

Result = FILE_SEARCH(!DIR, '*', /TEST_DIRECTORY)

See Also

FILE_TEST, FILEPATH, FINDFILE, GETENV
What’s New in IDL 5.5 FILE_SEARCH

224 Chapter 6: New IDL Routines
GRID_INPUT

The GRID_INPUT procedure preprocesses and sorts two-dimensional scattered data
points, and removes duplicate values. This procedure is also used for converting
spherical coordinates to Cartesian coordinates.

Syntax

GRID_INPUT, X, Y, F, X1, Y1, F1 [, DUPLICATES=string] [, EPSILON=value]
[, EXCLUDE=vector]

or

GRID_INPUT, Lon, Lat, F, Xyz, F1, /SPHERE [, /DEGREES]
[, DUPLICATES=string] [, EPSILON=value] [, EXCLUDE=vector]

or

GRID_INPUT, R, Theta, F, X1, Y1, F1, /POLAR [, /DEGREES]
[, DUPLICATES=string] [, EPSILON=value] [, EXCLUDE=vector]

Arguments

X, Y

These are input arguments for scattered data points, where X, and Y are location. All
of these arguments are N point vectors.

F

The function value at each location in the form of an N point vector.

Lon, Lat

These are input arguments representing scattered data points on a sphere, specifying
location (longitude and latitude). All are N point vectors. Lon, Lat are in degrees or
radians (default).

R, Theta

These are scattered data point input arguments representing the R and Theta polar
coordinate location in degrees or radians (default). All arguments are N point vectors.
GRID_INPUT What’s New in IDL 5.5

Chapter 6: New IDL Routines 225
X1, Y1, F1

These output arguments are processed and sorted single precision floating point data
which are passed as the input points to the GRIDDATA function.

Xyz

Upon return, a named variable that contains a 3-by-n array of Cartesian coordinates
representing points on a sphere.

Keywords

DEGREES

By default, all angular inputs and keywords are assumed to be in radian units. Set the
DEGREES keyword to change the angular input units to degrees.

DUPLICATES

Set this keyword to a string indicating how duplicate data points are handled per the
following table. The case (upper or lower) is ignored. The default setting for
DUPLICATES is “First”.

String Meaning

“First” Retain only the first encounter of the duplicate
locations.

“Last” Retain only the last encounter of the duplicate
locations.

“All” Retains all locations, which is invalid for any gridding
technique that requires a TRIANGULATION. Some
methods, such as Inverse Distance or Polynomial
Regression with no search criteria can handle
duplicates.

“Avg” Retain the average F value of the duplicate locations.

“Midrange” Retain the average of the minimum and maximum
duplicate locations ((Max(F) + Min (F)) / 2).

“Min” Retain the minimum of the duplicate locations
(Min(F)).

“Max” Retain the maximum of the duplicate locations
(Max(F)).
What’s New in IDL 5.5 GRID_INPUT

226 Chapter 6: New IDL Routines
EPSILON

The tolerance for finding duplicates. Points within EPSILON distance of each other
are considered duplicates. For spherical coordinates, EPSILON is in units of angular
distance, as set by the DEGREES keyword.

EXCLUDE

An N-point vector specifying the indices of the points to exclude.

POLAR

Set to indicate inputs are in polar coordinates.

SPHERE

Set to indicate inputs are in spherical coordinates. In this case, the output argument
Xyz is set to a 3-by-n array containing the spherical coordinates converted to 3-
dimensional Cartesian points on a sphere.

Example

The following example uses the data from the irreg_grid1.txt ASCII file. This
file contains scattered elevation data of a model of an inlet. This scattered elevation
data contains two duplicate locations. The GRID_INPUT procedure is used to omit
the duplicate locations.

; Import the Data:

; Determine the path to the file.
file = FILEPATH('irreg_grid1.txt', $

SUBDIRECTORY = ['examples', 'data'])

; Import the data from the file into a structure.
dataStructure = READ_ASCII(file)

; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)

; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
data = dataArray[*, 2]

; Display the Data:
GRID_INPUT What’s New in IDL 5.5

Chapter 6: New IDL Routines 227
; Scale the data to range from 1 to 253 so a color table can be
; applied. The values of 0, 254, and 255 are reserved as outliers.
scaled = BYTSCL(data, TOP = !D.TABLE_SIZE - 4) + 1B

; Load the color table. If you are on a TrueColor, set the
; DECOMPOSED keyword to the DEVICE command before running a
; color table related routine.
DEVICE, DECOMPOSED = 0
LOADCT, 38

; Open a display window and plot the data points.
WINDOW, 0
PLOT, x, y, /XSTYLE, /YSTYLE, LINESTYLE = 1, $

TITLE = 'Original Data, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE = 'y'

; Now display the data values with respect to the color table.
FOR i = 0L, (N_ELEMENTS(x) - 1) DO PLOTS, x[i], y[i], PSYM = -1, $

SYMSIZE = 2., COLOR = scaled[i]

; Preprocess and sort the data. GRID_INPUT will
; remove any duplicate locations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Display the results from GRID_INPUT:

; Scale the resulting data.
scaled = BYTSCL(dataSorted, TOP = !D.TABLE_SIZE - 4) + 1B

; Open a display window and plot the resulting data points.
WINDOW, 1
PLOT, xSorted, ySorted, /XSTYLE, /YSTYLE, LINESTYLE = 1, $

TITLE = 'The Data Preprocessed and Sorted, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE = 'y'

; Now display the resulting data values with respect to the color
; table.
FOR i = 0L, (N_ELEMENTS(xSorted) - 1) DO PLOTS, $

xSorted[i], ySorted[i], PSYM = -1, COLOR = scaled[i], $
SYMSIZE = 2.

See Also

GRIDDATA
What’s New in IDL 5.5 GRID_INPUT

228 Chapter 6: New IDL Routines
GRIDDATA

The GRIDDATA function interpolates scattered data values and locations sampled on
a plane or a sphere to a regular grid. This is accomplished using one of several
available methods. The function result is a two-dimensional floating point array.
Computations are performed in single precision floating point. Interpolation methods
supported by this function are as follows:

Syntax

Interleaved

Result = GRIDDATA(X, F)

Planar

Result = GRIDDATA(X, Y, F)

Sphere From Cartesian Coordinates

Result = GRIDDATA(X, Y, Z, F, /SPHERE)

Sphere From Spherical Coordinates

Result = GRIDDATA(Lon, Lat, F, /SPHERE)

Inverse Distance Keywords:
[, METHOD='InverseDistance' | /INVERSE_DISTANCE]
[, ANISOTROPY=vector] [, /DEGREES] [, DELTA=vector]
[, DIMENSION=vector] [, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, POWER=value] [, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }]
[, SMOOTHING=value] [, /SPHERE] [, START=vector]

• Inverse Distance (default) • Natural Neighbor

• Kriging • Nearest Neighbor

• Linear • Polynomial Regression

• Minimum Curvature • Quintic

• Modified Shepard’s • Radial Basis Function
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 229
Kriging Keywords: METHOD='Kriging' | /KRIGING [, ANISOTROPY=vector]
[, DELTA=vector] [, DIMENSION=vector]
[, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }] [, /SPHERE]
[, START=vector] [, VARIOGRAM=vector]

Linear Interpolation Keywords:
METHOD='Linear' | /LINEAR , TRIANGLES=array [, DELTA=vector]

[, DIMENSION=vector] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, START=vector]

Minimum Curvature Keywords:
METHOD='MinimumCurvature' | /MIN_CURVATURE [, DELTA=vector]
[, DIMENSION=vector] [, START=vector]

Modified Shepard’s Keywords: METHOD='ModifiedShepards' | /SHEPARDS,
TRIANGLES=array [, ANISOTROPY=vector] [, DELTA=vector]
[, DIMENSION=vector] [, EMPTY_SECTORS=value]
[, FAULT_POLYGONS=vector] [, FAULT_XY=array] [, /GRID, XOUT=vector,
YOUT=vector] [, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, MISSING=value] [, NEIGHBORHOOD=array] [, SEARCH_ELLIPSE=vector]
[, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }] [, START=vector]

Natural Neighbor Keywords:
METHOD='NaturalNeighbor' | /NATURAL_NEIGHBOR, TRIANGLES=array
[, /DEGREES] [, DELTA=vector] [, DIMENSION=vector]
[, /GRID, XOUT=vector, YOUT=vector] [, MISSING=value]
[, /SPHERE] [, START=vector]

Nearest Neighbor Keywords:
METHOD='NearestNeighbor' | /NEAREST_NEIGHBOR, TRIANGLES=array
[, /DEGREES] [, DELTA=vector] [, DIMENSION=vector]
[, FAULT_POLYGONS=vector] [, FAULT_XY=array] [, /GRID, XOUT=vector,
YOUT=vector] [, MISSING=value] [, /SPHERE] [, START=vector]
What’s New in IDL 5.5 GRIDDATA

230 Chapter 6: New IDL Routines
Polynomial Regression Keywords:
METHOD='PolynomialRegression' | /POLYNOMIAL_REGRESSION,
[, DELTA=vector] [, DIMENSION=vector]
[, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, /GRID, XOUT=vector, YOUT=vector]
[, MISSING=value] [, POWER=value] [, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }]
[, START=vector]

Quintic Keywords: METHOD='Quintic' | /QUINTIC, TRIANGLES=array
[, DELTA=vector] [, DIMENSION=vector] [, MISSING=value]
[, START=vector]

Radial Basis Function Keywords:
METHOD='RadialBasisFunction' | /RADIAL_BASIS_FUNCTION,
[, ANISOTROPY=vector] [, /DEGREES] [, DELTA=vector]
[, DIMENSION=vector] [, TRIANGLES=array [, EMPTY_SECTORS=value]
[, MAX_PER_SECTOR=value] [, MIN_POINTS=value]
[, SEARCH_ELLIPSE=vector]] [, FAULT_POLYGONS=vector]
[, FAULT_XY=array] [, FUNCTION_TYPE={ 0 | 1 | 2 | 3 | 4 }]
[, /GRID, XOUT=vector, YOUT=vector] [, MISSING=value]
[, SECTORS={1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 }] [, SMOOTHING=value] [, /SPHERE]
[, START=vector]

Return Value

Result is a two-dimensional floating point array. Computations are preformed in
single precision floating point.

Arguments

X [, Y [, Z]]

The point locations. If only one input coordinate parameter is supplied, the points are
interleaved; for the Cartesian coordinate system the points are 2-by-n dimensions;
and 3-by-n for a sphere in Cartesian coordinates.

F

The function value at each location in the form of an n-point vector.
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 231
Lon, Lat

These arguments contain the locations (on a sphere) of the data points (similar to X,
and Y) but are in degrees or radians (default) depending on the use of the keyword
DEGREES.

Keywords

ANISOTROPY

This keyword is a vector describing an ellipse (see the description for the
SEARCH_ELLIPSE keyword). All points on the circumference of the ellipse have an
equal influence on a point at the center of the ellipse.

For example, assume that atmospheric data are being interpolated, with one
dimension being altitude, and the other dimension representing distance from a point.
If the vertical mixing is half that of the horizontal mixing, a point 100 units from an
interpolate and at the same level has the same influence as a point 50 units above or
below the interpolate at the same horizontal location. This effect requires setting the
ANISOTROPY keyword to [2, 1, 0] which forms an ellipse with an X-axis length
twice as long as its Y-axis length.

DEGREES

By default, all angular inputs and keywords are assumed to be in radian units. Set the
DEGREES keyword to change the angular input units to degrees.

DELTA

A two-element array specifying the grid spacing in X, and Y. If this keyword is not
specified, then the grid spacing is determined from the values of the DIMENSION
and START keywords. These keywords have default values of 25 and [min(x),
min(y)], respectively. The spacing derived from these keywords creates a grid of
DIMENSION cells, enclosing a rectangle from START, to [max(x), max(y)]. This
keyword can also be set to a scalar value to be used for the grid size in both X and Y.

This keyword is ignored if the GRID, XOUT and YOUT keywords are specified.

DIMENSION

A two element array specifying the grid dimensions in X and Y. Default value is 25
for each dimension. This keyword can also be set to a scalar value to be used for the
grid spacing in both X and Y.

This keyword is ignored if the GRID, XOUT and YOUT keywords are specified.
What’s New in IDL 5.5 GRIDDATA

232 Chapter 6: New IDL Routines
EMPTY_SECTORS

This keyword defines the search rules for the maximum number of sectors that may
be empty when interpolating at each point. If this number or more sectors contain no
data points, considering the search ellipse and/or the fault polygons, the resulting
interpolant is the missing data value.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

FAULT_POLYGONS

Set this keyword to an array containing one or more polygon descriptions. A polygon
description is an integer or longword array of the form: [n, i0, i1, ..., in–1], where n is
the number of vertices that define the polygon, and i0...in–1 are indices into the
FAULT_XY vertices. The FAULT_POLYGON array may contain multiple polygon
descriptions that have been concatenated. To have this keyword ignore an entry in the
FAULT_POLYGONS array, set the vertex count, n, and all associated indices to 0. To
end the drawing list, even if additional array space is available, set n to –1. If this
keyword is not specified, a single connected polygon is generated from FAULT_XY.

Note
FAULT_POLYGONS are not supported with spherical gridding.

FAULT_XY

The a 2-by-n array specifying the coordinates of points on the fault lines/polygons.

Note
FAULT_XY is not supported with spherical gridding.
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 233
FUNCTION_TYPE

Note
This keyword is only used with the Radial Basis Function method of interpolation.

Set this keyword to one of the values shown in the following table to indicate which
basis function to use. Default is 0, the Inverse Multiquadric function.

GRID

The GRID keyword controls how the XOUT and YOUT vectors specify where
interpolates are desired.

If GRID is set, XOUT and YOUT must also be specified. Interpolation is performed
on a regular or irregular grid specified by the vectors XOUT with m elements and
YOUT with n elements. The Result is an m-by-n grid with point [i, j] resulting from
the interpolation at (XOUT[i], YOUT[j]). When XOUT and YOUT are used, the
DELTA, DIMENSION and START keywords are ignored.

INVERSE_DISTANCE

Selects the Inverse Distance method of interpolation.

Value Function Type Used Equation

0 Inverse Multiquadric

1 Multilog

2 Multiquadric

3 Natural Cubic Spline

4 Thin Plate Spline

Note - In the equations, h = the anisotropically scaled distance from the interpolant
to the node, and R2 = the value of the SMOOTHING keyword.

B h() 1 h
2

R
2

+()⁄=

B h() h
2

R
2

+()log=

B h() h
2

R
2

+=

B h() h
2

R
2

+()
3 2⁄

=

B h() h
2

R
2

+() h
2

R
2

+()log=
What’s New in IDL 5.5 GRIDDATA

234 Chapter 6: New IDL Routines
KRIGING

Selects the Kriging method of interpolation. The variogram type for the Kriging
method is set by default, however the VARIOGRAM keyword can be used to set
variogram parameters.

LINEAR

Selects the Linear method of interpolation. The TRIANGLES keyword is required
when the LINEAR keyword is used.

MAX_PER_SECTOR

This keyword defines the search rules for the maximum number of data points to
include in each sector when interpolating. Search rules effectively limit the number
of data points used in computing each interpolate. For example, to use the nearest n
nodes to compute each interpolant, specify MAX_PER_SECTOR = n and use the
TRIANGLES keyword.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

METHOD

A string containing one of the method names as shown in the following table. The
default for METHOD is “InverseDistance”.

Note
The interpolation method can be chosen using the METHOD keyword set to the
specific string, or by setting the corresponding method name keyword.

Note
There are no spaces between words in the method strings and the strings are case
insensitive.

Method String Meaning

“InverseDistance” Data points closer to the grid points have more effect
than those which are further away.
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 235
MIN_CURVATURE

Selects the Minimum Curvature method of interpolation.

MIN_POINTS

If fewer than this number of data points are encountered in all sectors, the value of the
resulting grid point is set to the value of the MISSING keyword.

“Kriging” Data points and their spatial variance are used to
determine trends which are applied to the grid points.

“Linear” Grid points are linearly interpolated from triangles
formed by Delaunay triangulation.

“MinimumCurvature” A plane of grid points is conformed to the data points
while trying to minimize the amount of bending in the
plane.

“ModifiedShepards” Inverse Distance weighted with the least squares
method.

“NaturalNeighbor” Each interpolant is a linear combination of the three
vertices of its enclosing Delaunay triangle and their
adjacent vertices.

“NearestNeighbor” The grid points have the same value as the nearest
data point.

“PolynomialRegression” Each interpolant is a least-squares fit of a polynomial
in X and Y of the specified power to the specified data
points.

“Quintic” Grid points are interpolated with quintic polynomials
from triangles formed by Delaunay triangulation.

“RadialBasisFunction” The effects of data points are weighted by a function
of their radial distance from a grid point.

Method String Meaning
What’s New in IDL 5.5 GRIDDATA

236 Chapter 6: New IDL Routines
The MIN_POINTS keyword also indicates the number of closest points used for each
local fit, if SEARCH_ELLIPSE isn’t specified.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

MISSING

Set this keyword to the value to use for missing data values. Default is 0.

NATURAL_NEIGHBOR

Selects the Natural Neighbor method of interpolation.

Note
The TRIANGLES keyword is required when the NATURAL_NEIGHBOR
keyword is used.

NEAREST_NEIGHBOR

Selects the Nearest Neighbor method of interpolation.

Note
The TRIANGLES keyword is required when the NEAREST_NEIGHBOR
keyword is used.

NEIGHBORHOOD

Note
The NEIGHBORHOOD keyword is only used for the Modified Shepard’s method
of interpolation.

A two-element array, [Nq, Nw] defining the quadratic fit, Nq, and weighting, Nw,
neighborhood sizes for the Modified Shepard’s method. The default for Nq is the
smaller of 13 and the number of points minus 1, with a minimum of 5. The default for
Nw is the smaller of 19 and the number of points. The Modified Shepard’s method
first computes the coefficients of a quadratic fit for each input point, using its Nq
closest neighbors.
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 237
When interpolating an output point, the quadratic fits from the Nw closest input
points are weighted inversely by a function of distance and then combined. The size
of the neighborhood used for Shepard’s method interpolation may also be specified
by the search rules keywords.

POLYNOMIAL_REGRESSION

Selects the Polynomial Regression method for interpolation. The power of the
polynomial regression is set to 2 by default, however the POWER keyword can be
used to change the power to 1 or 3.

The function fit to each interpolant corresponding to the POWER keyword set equal
to 1, 2 (default), and 3 respectively is as follows:

(default)

By inspection, a minimum of three data points are required to fit the linear
polynomial, six data points for the second polynomial equation (where POWER = 2),
and ten data points for the third polynomial (POWER = 3). If not enough data points
exist for a given interpolant, the missing data values are set to the value of the
MISSING keyword.

POWER

The weighting power of the distance, or the maximum order in the polynomial fitting
function. For polynomial regression, this value is either 1, 2 (the default), or 3.

Note
The POWER keyword is only used for the Inverse Distance and Polynomial
Regression methods of interpolation.

QUINTIC

Selects the triangulation with Quintic interpolation method.

Note
The TRIANGLES keyword is required when the QUINTIC keyword is used.

F x y(,) a0 a1x a2y+ +=

F x y(,) a0 a1x a2y a3x
2

a4y
2

a5xy+ + + + +=

F x y(,) a0 a1x a2y a3x
2

a4y
2

a5xy a6x
3

a7y
3

a8x
2
y a9xy

2
+ + + + + + + + +=
What’s New in IDL 5.5 GRIDDATA

238 Chapter 6: New IDL Routines
RADIAL_BASIS_FUNCTION

Selects the Radial Basis Function method of interpolation.

SEARCH_ELLIPSE

This keyword defines the search rules as a scalar or vector of from 1 to 3 elements
that specify an ellipse or circle in the form [R1], [R1, R2], or [R1, R2, Theta]. R1 is
one radius, R2 the other radius, and Theta describes the angle between the X-axis to
the R1-axis, counterclockwise, in degrees or radians as specified by the DEGREES
keyword. Only data points within this ellipse, centered on the location of the
interpolate, are considered. If not specified, or 0, this distance test is not applied.
Search rules effectively limit the number of data points used in computing each
interpolate.

For example, to only consider data points within a distance of 5 units of each
interpolant, specify the keyword as SEARCH_ELLIPSE = 5.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

SECTORS

This keyword defines the search rules for the number of sectors used in applying the
MAX_SECTOR, EMPTY_SECTORS, and MIN_POINTS tests, an integer from 1
(the default setting) to 8.

SHEPARDS

Selects the Modified Shepard’s method of interpolation. The parameters for the
Modified Shepard’s method are set by default, however the NEIGHBORHOOD
keyword can be used to modify the parameters.

Note
The TRIANGLES keyword is required when the SHEPARDS keyword is used.
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 239
SMOOTHING

A scalar value defining the smoothing radius. For the Radial Basis Function method,
if SMOOTHING is not specified, the default value is equal to the average point
spacing, assuming a uniform distribution. For the Inverse Distance method, the
default value is 0, implying no smoothing.

Note
The SMOOTHING keyword is used only for the Inverse Distance and Radial Basis
Function methods of interpolation.

SPHERE

If set, data points lie on the surface of a sphere.

START

A scalar or a two-element array specifying the start of the grid in X, and Y. Default
value is [min(x), min(y)].

This keyword is ignored if the GRID, XOUT and YOUT keywords are specified.

TRIANGLES

A 3-by-nt longword array describing the connectivity of the input points, as returned
by TRIANGULATE, where nt is the number of triangles. If duplicate point locations
are input and the TRIANGLES keyword is present, only one of the points is
considered.

Note
The TRIANGLES keyword is required for the Natural Neighbor, Nearest Neighbor,
Modified Shepard’s, Linear, and Quintic Interpolation methods.

Note
The TRIANGLES keyword is required when the EMPTY_SECTORS,
MAX_PER_SECTOR, MIN_POINTS, or SEARCH_ELLIPSE keywords are used.

VARIOGRAM

Specifies the variogram type and parameters for the Kriging method. This parameter
is a vector of one to four elements in the form of: [Type, Range, Nugget, Scale]. The
Type is encoded as: 1 for linear, 2 for exponential, 3 for gaussian, 4 for spherical.
What’s New in IDL 5.5 GRIDDATA

240 Chapter 6: New IDL Routines
Defaults values are: Type is exponential, Range is 8 times the average point spacing
assuming a uniform distribution, Nugget is zero, and Scale is 1.

Note
The VARIOGRAM keyword is only used with the Kriging method of interpolation.

XOUT

If the GRID keyword is set, use XOUT to specify irregularly spaced rectangular
output grids. If XOUT is specified, YOUT must also be specified. When XOUT and
YOUT are used, the DELTA, DIMENSION and START keywords are ignored.

If GRID is not set (the default), the location vectors XOUT and YOUT directly
contain the X and Y values of the interpolates, and must have the same number of
elements. The Result has the same structure and number of elements as XOUT and
YOUT, with point [i] resulting from the interpolation at (XOUT[i], YOUT[i]).

YOUT

If the GRID keyword is set, use YOUT to specify irregularly spaced rectangular
output grids. If YOUT is specified, XOUT must also be specified. When XOUT and
YOUT are used, the DELTA, DIMENSION and START keywords are ignored.

If GRID is not set (the default), the location vectors XOUT and YOUT directly
contain the X and Y values of the interpolates, and must have the same number of
elements. The Result has the same structure and number of elements as XOUT and
YOUT, with point [i] resulting from the interpolation at (XOUT[i], YOUT[i]).
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 241
Example 1

This example interpolates a data set measured on an irregular grid. Various types of
the Inverse Distance interpolation method (the default method) are used in this
example.

; Create a dataset of N points.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 768, TITLE = 'Inverse Distance'
!P.MULTI = [0, 1, 3, 0, 0]

; Inverse distance: Simplest default case which produces a 25 x
; 25 grid.
grid = GRIDDATA(x, y, f)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Simple Example'

; Default case, Inverse distance.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Larger Grid'

; Inverse distance + smoothing.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

SMOOTH = 0.05)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Smoothing'

; Set system variable back to default value.
!P.MULTI = 0
What’s New in IDL 5.5 GRIDDATA

242 Chapter 6: New IDL Routines
Example 2

This example uses the same data as the previous one, however in this example we use
the Radial Basis Function and the Modified Shepard’s interpolation methods.

; Create a dataset of N points.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form of a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 512, $

TITLE = 'Different Methods of Gridding'
!P.MULTI = [0, 1, 2, 0, 0]

; Use radial basis function with multilog basis function.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

/RADIAL_BASIS_FUNCTION, FUNCTION_TYPE = 1)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Radial Basis Function'

; The following example requires triangulation.
TRIANGULATE, x, y, tr

; Use Modified Shepard's method.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

TRIANGLES = tr, /SHEPARDS)
SURFACE, grid, CHARSIZE = 3, TITLE = "Modified Shepard's Method"

; Set system variable back to default value.
!P.MULTI = 0
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 243
Example 3

This example uses the same data as the previous ones, however in this example we
use various types of the Polynomial Regression interpolation method.

; Create a dataset of N points.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 768, $

TITLE = 'Polynomial Regression'
!P.MULTI = [0, 1, 3, 0, 0]

; The following examples require the triangulation.
TRIANGULATE, x, y, tr

; Fit with a 2nd degree polynomial in x and y. This fit considers
; all points when fitting the surface, obliterating the individual
; peaks.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

TRIANGLES = tr, /POLYNOMIAL_REGRESSION)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Global Degree 2 Polynomial'

; Fit with a 2nd degree polynomial in x and y, but this time use
; only the 10 closest nodes to each interpolant. This provides a
; relatively smooth surface, but still shows the individual peaks.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

TRIANGLES = tr, /POLYNOMIAL_REGRESSION, MAX_PER_SECTOR = 10)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Local Polynomial, 10 Point'

; As above, but use only the nodes within a distance of 0.4 when
; fitting each interpolant.
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

TRIANGLES = tr, /POLYNOMIAL_REGRESSION, SEARCH_ELLIPSE = 0.4)
SURFACE, grid, CHARSIZE = 3, $

TITLE = 'Local Polynomial, Radius = 0.4'

; Set system variable back to default value.
!P.MULTI = 0
What’s New in IDL 5.5 GRIDDATA

244 Chapter 6: New IDL Routines
Example 4

This example uses the same data as the previous ones, however in this example we
show how to speed up the interpolation by limiting the interpolation to the local area
around each interpolate.

; Create a dataset of N points.\.
n = 100 ;# of scattered points
seed = -121147L ;For consistency
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)

; Create a dependent variable in the form a function of (x,y)
; with peaks & valleys.
f = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $

3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
EXP(-(9*x-4)^2 - (2-9*y)^2)

; Note: the inverse distance, kriging, polynomial regression, and
; radial basis function methods are, by default, global methods in
; which each input node affects each output node. With these
; methods, large datasets can require a prohibitively long time to
; compute unless the scope of the interpolation is limited to a
; local area around each interpolate by specifying search rules.
; In fact, the radial basis function requires time proportional to
; the cube of the number of input points.

; For example, with 2,000 input points, a typical workstation
; required 500 seconds to interpolate a 10,000 point grid using
; radial basis functions. By limiting the size of the fit to the
; 20 closest points to each interpolate, via the MIN_POINTS
; keyword, the time required dropped to less than a second.

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 512, $

TITLE = 'Radial Basis Function'
!P.MULTI = [0, 1, 2, 0, 0]

; Slow way:
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

/RADIAL_BASIS_FUNCTION)
SURFACE, grid, CHARSIZE = 3, TITLE = 'All Points'

; The following example requires triangulation.
TRIANGULATE, x, y, tr
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 245
; Faster way:
grid = GRIDDATA(x, y, f, START = 0, DELTA = 0.02, DIMENSION = 51, $

/RADIAL_BASIS_FUNCTION, MIN_POINTS = 15, TRIANGLES = tr)
SURFACE, grid, CHARSIZE = 3, TITLE = 'Nearest 15 Points'

; Set system variable back to default value.
!P.MULTI = 0

Example 5

This example interpolates a spherical data set measured on an irregular grid. We use
the Kriging and Natural Neighbors interpolation methods in this example.

; Create a 100 scattered points on a sphere and form a function
; of their latitude and longitude. Then grid them to a 2 degree
; grid over the sphere, display a Mollweide projection map, and
; overlay the contours of the result on the map.

; Create a dataset of N points.
n = 100
; A 2 degree grid with grid dimensions.
delta = 2
dims = [360, 180]/delta
; Longitude and latitudes
lon = RANDOMU(seed, n) * 360 - 180
lat = RANDOMU(seed, n) * 180 - 90
; The lon/lat grid locations
lon_grid = FINDGEN(dims[0]) * delta - 180
lat_grid = FINDGEN(dims[1]) * delta - 90

; Create a dependent variable in the form of a smoothly varying
; function.
f = SIN(2*lon*!DTOR) + COS(lat*!DTOR) ;

; Initialize display.
WINDOW, 0, XSIZE = 512, YSIZE = 768, TITLE = 'Spherical Gridding'
!P.MULTI = [0, 1, 3, 0, 0]

; Kriging: Simplest default case.
z = GRIDDATA(lon, lat, f, /KRIGING, /DEGREES, START = 0, /SPHERE, $

DELTA = delta, DIMENSION = dims)
MAP_SET, /MOLLWEIDE, /ISOTROPIC, /HORIZON, /GRID, CHARSIZE = 3, $

TITLE = 'Sphere: Kriging'
CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW
What’s New in IDL 5.5 GRIDDATA

246 Chapter 6: New IDL Routines
; This example is the same as above, but with the addition of a
; call to QHULL to triangulate the points on the sphere, and to
; then interpolate using the 10 closest points. The gridding
; portion of this example requires about one-fourth the time as
; above.
QHULL, lon, lat, tr, /DELAUNAY, SPHERE = s
z = GRIDDATA(lon, lat, f, /DEGREES, START = 0, DELTA = delta, $

DIMENSION = dims, TRIANGLES = tr, MIN_POINTS = 10, /KRIGING, $
/SPHERE)

MAP_SET, /MOLLWEIDE, /ISOTROPIC, /HORIZON, /GRID, /ADVANCE, $
CHARSIZE = 3, TITLE = 'Sphere: Kriging, 10 Closest Points'

CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

; This example uses the natural neighbor method, which is about
; four times faster than the above example but does not give as
; smooth a surface.
z = GRIDDATA(lon, lat, f, /DEGREES, START = 0, DELTA = delta, $

DIMENSION = dims, /SPHERE, /NATURAL_NEIGHBOR, TRIANGLES = tr)
MAP_SET, /MOLLWEIDE, /ISOTROPIC, /HORIZON, /GRID, /ADVANCE, $

CHARSIZE = 3, TITLE = 'Sphere: Natural Neighbor'
CONTOUR, z, lon_grid, lat_grid, /OVERPLOT, NLEVELS = 10, /FOLLOW

; Set system variable back to default value.
!P.MULTI = 0

Example 6

The following example uses the data from the irreg_grid1.txt ASCII file. This
file contains scattered elevation data of a model of an inlet. This scattered elevation
data contains two duplicate locations.

The GRID_INPUT procedure is used to omit the duplicate locations for the
GRIDDATA function. The GRIDDATA function is then used to grid the data using
the Radial Basis Function method. This method is specified by setting the METHOD
keyword the RadialBasisFunction string, although it could easily be done using
the RADIAL_BASIS_FUNCTION keyword.

; Import the Data:

; Determine the path to the file.
file = FILEPATH('irreg_grid1.txt', $

SUBDIRECTORY = ['examples', 'data'])

; Import the data from the file into a structure.
dataStructure = READ_ASCII(file)
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 247
; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)

; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
data = dataArray[*, 2]

; Display the Data:

; Scale the data to range from 1 to 253 so a color table can be
; applied. The values of 0, 254, and 255 are reserved as outliers.
scaled = BYTSCL(data, TOP = !D.TABLE_SIZE - 4) + 1B

; Load the color table. If you are on a TrueColor, set the
; DECOMPOSED keyword to the DEVICE command before running a
; color table related routine.
DEVICE, DECOMPOSED = 0
LOADCT, 38

; Open a display window and plot the data points.
WINDOW, 0
PLOT, x, y, /XSTYLE, /YSTYLE, LINESTYLE = 1, $

TITLE = 'Original Data, Scaled (1 to 253)', $
XTITLE = 'x', YTITLE = 'y'

; Now display the data values with respect to the color table.
FOR i = 0L, (N_ELEMENTS(x) - 1) DO PLOTS, x[i], y[i], PSYM = -1, $

SYMSIZE = 2., COLOR = scaled[i]

; Grid the Data and Display the Results:

; Preprocess and sort the data. GRID_INPUT will
; remove any duplicate locations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Initialize the grid parameters.
gridSize = [51, 51]

; Use the equation of a straight line and the grid parameters to
; determine the x of the resulting grid.
slope = (MAX(xSorted) - MIN(xSorted))/(gridSize[0] - 1)
intercept = MIN(xSorted)
xGrid = (slope*FINDGEN(gridSize[0])) + intercept
What’s New in IDL 5.5 GRIDDATA

248 Chapter 6: New IDL Routines
; Use the equation of a straight line and the grid parameters to
; determine the y of the resulting grid.
slope = (MAX(ySorted) - MIN(ySorted))/(gridSize[1] - 1)
intercept = MIN(ySorted)
yGrid = (slope*FINDGEN(gridSize[1])) + intercept

; Grid the data with the Radial Basis Function method.
grid = GRIDDATA(xSorted, ySorted, dataSorted, $

DIMENSION = gridSize, METHOD = 'RadialBasisFunction')

; Open a display window and contour the Radial Basis Function
; results.
WINDOW, 1
scaled = BYTSCL(grid, TOP = !D.TABLE_SIZE - 4) + 1B
CONTOUR, scaled, xGrid, YGrid, /XSTYLE, /YSTYLE, /FILL, $

LEVELS = BYTSCL(INDGEN(18), TOP = !D.TABLE_SIZE - 4) + 1B, $
C_COLORS = BYTSCL(INDGEN(18), TOP = !D.TABLE_SIZE - 4) + 1B, $
TITLE = 'The Resulting Grid with Radial Basis Function', $
XTITLE = 'x', YTITLE = 'y'

Example 7

The following example uses the data from the irreg_grid1.txt ASCII file. This
file contains scattered elevation data of a model of an inlet. This scattered elevation
data contains two duplicate locations. The same data is used in the previous example.

The GRID_INPUT procedure is used to omit the duplicate locations for the
GRIDDATA function. The GRIDDATA function is then used to grid the data using
the Radial Basis Function method. This method is specified by setting the METHOD
keyword the RadialBasisFunction string, although it could easily be done using
the RADIAL_BASIS_FUNCTION keyword.

Faulting is also applied in this example. First, a fault area is placed around the right
side of the dataset. This fault area contains data points. The data points within this
area are gridded separately from the points outside of the fault area.

Then, a fault area is defined within an region that does not contain any data points.
Since this fault area does not contain any points, the grid within this region simply
results to the value defined by the MISSING keyword. The points outside of the fault
area are gridded independent of the fault region.

; Import the Data:

; Determine the path to the file.
file = FILEPATH('irreg_grid1.txt', $

SUBDIRECTORY = ['examples', 'data'])
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 249
; Import the data from the file into a structure.
dataStructure = READ_ASCII(file)

; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)

; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
data = dataArray[*, 2]

; Grid the Data and Display the Results:

; Preprocess and sort the data. GRID_INPUT will
; remove any duplicate locations.
GRID_INPUT, x, y, data, xSorted, ySorted, dataSorted

; Initialize the grid parameters.
gridSize = [51, 51]

; Use the equation of a straight line and the grid parameters to
; determine the x of the resulting grid.
slope = (MAX(xSorted) - MIN(xSorted))/(gridSize[0] - 1)
intercept = MIN(xSorted)
xGrid = (slope*FINDGEN(gridSize[0])) + intercept

; Use the equation of a straight line and the grid parameters to
; determine the y of the resulting grid.
slope = (MAX(ySorted) - MIN(ySorted))/(gridSize[1] - 1)
intercept = MIN(ySorted)
yGrid = (slope*FINDGEN(gridSize[1])) + intercept

; Initialize display.
DEVICE, DECOMPOSED = 0
LOADCT, 38
WINDOW, 0, XSIZE = 600, YSIZE = 600, $

TITLE = 'The Resulting Grid from the Radial Basis Function '+ $
'Method with Faulting'

!P.MULTI = [0, 1, 2, 0, 0]

; Define a fault area, which contains data points.
faultVertices = [[2200, 4000], [2200, 3000], [2600, 2700], $

[2600, -50], [5050, -50], [5050, 4000], [2200, 4000]]
faultConnectivity = [7, 0, 1, 2, 3, 4, 5, 6, -1]
What’s New in IDL 5.5 GRIDDATA

250 Chapter 6: New IDL Routines
; Grid the data with faulting using the Radial Basis Function
; method.
grid = GRIDDATA(xSorted, ySorted, dataSorted, $

DIMENSION = gridSize, METHOD = 'RadialBasisFunction', $
FAULT_XY = faultVertices, FAULT_POLYGONS = faultConnectivity, $
MISSING = MIN(dataSorted))

; Display grid results.
CONTOUR, BYTSCL(grid), xGrid, YGrid, /XSTYLE, /YSTYLE, /FILL, $

LEVELS = BYTSCL(INDGEN(18)), C_COLORS = BYTSCL(INDGEN(18)), $
TITLE = 'Fault Area Contains Data ' + $
'(Fault Area in Dashed Lines)', XTITLE = 'x', YTITLE = 'y'

; Display outline of fault area.
PLOTS, faultVertices, /DATA, LINESTYLE = 2, THICK = 2

; Define a fault area, which does not contain data points.
faultVertices = [[2600, -50], [2800, -50], [2800, 2700], $

[2400, 3000], [2400, 4000], [2200, 4000], [2200, 3000], $
[2600, 2700], [2600, -50]]

faultConnectivity = [9, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1]

; Grid the data with faulting using the Radial Basis Function
; method.
grid = GRIDDATA(xSorted, ySorted, dataSorted, $

DIMENSION = gridSize, METHOD = 'RadialBasisFunction', $
FAULT_XY = faultVertices, FAULT_POLYGONS = faultConnectivity, $
MISSING = MIN(dataSorted))

; Display grid results.
CONTOUR, BYTSCL(grid), xGrid, YGrid, /XSTYLE, /YSTYLE, /FILL, $

LEVELS = BYTSCL(INDGEN(18)), C_COLORS = BYTSCL(INDGEN(18)), $
TITLE = 'Fault Area Does Not Contain Data '+ $
'(Fault Area in Dashed Lines)', XTITLE = 'x', YTITLE = 'y'

; Display outline of fault area.
PLOTS, faultVertices, /DATA, LINESTYLE = 2, THICK = 2

; Set system variable back to default value.
!P.MULTI = 0
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 251
References

Kriging

Isaaks, E. H., and Srivastava, R. M., An Introduction to Applied Geostatistics,
Oxford University Press, New York, 1989.

Minimum Curvature

Barrodale, I., et al, "Warping Digital Images Using Thin Plate Splines", Pattern
Recognition, Vol 26, No 2, pp. 375-376., 1993.

Powell, M.J.D., "Tabulation of thin plate splines on a very fine two-dimensional
grid", Report No. DAMTP 1992/NA2, University of Cambridge, Cambridge, U.K.
1992.

Modified Shepard’s

Franke, R., and Nielson, G. , "Smooth Interpolation of Large Sets of Scattered Data",
International Journal for Numerical Methods in Engineering, v. 15, 1980, pp. 1691-
1704.

Renka, R. J., Algorithm 790 - CSHEP2D: Cubic Shepard Method for Bivariate
Interpolation of Scattered Data, Robert J. Renka, ACM Trans. Math Softw. 25, 1
(March 1999), pp. 70-73.

Shepard, D., "A Two Dimensional Interpolation Function for Irregularly Spaced
Data", Proc. 23rd Nat. Conf. ACM, 1968, pp. 517-523.

Natural Neighbor

Watson, D. F., Contouring: A Guide to the Analysis and Display of Spatial Data,
Pergamon Press, ISBN 0 08 040286 0, 1992.

Watson, D. F., Nngridr - An Implementation of Natural Neighbor Interpolation,
David Watson, P.O. Box 734, Clarement, WA 6010, Australia, 1994.

Quintic

Akima, H., Algorithm 761 - Scattered-data Surface Fitting that has the Accuracy of a
Cubic Polynomial, Hiroshi Akima, ACM Trans. Math. Softw. 22, 3 (Sep. 1996), pp.
362 - 371.

Renka, R.J., "A Triangle-based C1 Interpolation Method", Rocky Mountain Journal
of Mathematics, Vol 14, No. 1, 1984.
What’s New in IDL 5.5 GRIDDATA

252 Chapter 6: New IDL Routines
Radial Basis Function

Franke, R., A Critical Comparison of Some Methods for Interpolation of Scattered
Data, Naval Postgraduate School, Technical Report, NPS 53-79-003, 1979.

Hardy, R.L., "Theory and Applications of the Multiquadric-biharmonic Method",
Computers Math. With Applic, v 19, no. 8/9, 1990, pp.163-208.

See Also

GRID_INPUT
GRIDDATA What’s New in IDL 5.5

Chapter 6: New IDL Routines 253
HDF_VD_ATTRFIND

The HDF_VD_ATTRFIND function returns an attribute's index number given the
name of an attribute associated with the specified vdata or vdata/field pair. If the
attribute cannot be located, –1 is returned.

Syntax

Result = HDF_VD_ATTRFIND(VData, FieldID, Name)

Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.

FieldID

A zero-based index specifying the field, or a string containing the name of the field
within the VData to which the attribute is attached. Setting FieldID to –1 specifies
that the attribute is attached to the vdata itself.

Name

A string containing the name of the attribute whose index is to be returned.

Example

For an example using this routine, see the documentation for HDF_VD_ATTRSET.

See Also

HDF_VD_ATTRINFO, HDF_VD_ATTRSET, HDF_VD_ISATTR,
HDF_VD_NATTRS
What’s New in IDL 5.5 HDF_VD_ATTRFIND

254 Chapter 6: New IDL Routines
HDF_VD_ATTRINFO

The HDF_VD_ATTRINFO procedure reads or retrieves information about a vdata
attribute or a vdata field attribute from the currently attached HDF vdata structure. If
the attribute is not present, an error message is printed.

Syntax

HDF_VD_ATTRINFO, VData, FieldID, AttrID, Values [, COUNT=variable]
[, DATA=variable] [, HDF_TYPE=variable] [, NAME=variable]
[, TYPE=variable]

Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.

FieldID

A zero-based index specifying the field, or a string containing the name of the field
within the VData whose attribute is to be read. Setting FieldID to -1 specifies that the
attribute to be read is attached to the vdata itself.

AttrID

A zero-based integer index specifying the attribute to be read, or a string containing
the name of that attribute.

Values

The attribute value(s) to be written.

Keywords

COUNT

Set this keyword to a named variable in which the number of data values (order of the
attribute) is returned.

DATA

Set this keyword to a named variable in which the attribute data is returned.
HDF_VD_ATTRINFO What’s New in IDL 5.5

Chapter 6: New IDL Routines 255
HDF_TYPE

Set this keyword to a named variable in which the HDF data type of the attribute is
returned as a scalar string.

NAME

Set this keyword to a named variable in which the name of the attribute is returned.

TYPE

Set this keyword to a named variable in which the IDL type of the attribute is
returned as a scalar string.

Example

For an example using this routine, see the documentation for HDF_VD_ATTRSET.

See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRSET, HDF_VD_ISATTR,
HDF_VD_NATTRS
What’s New in IDL 5.5 HDF_VD_ATTRINFO

256 Chapter 6: New IDL Routines
HDF_VD_ATTRSET

The HDF_VD_ATTRSET procedure writes a vdata attribute or a vdata field attribute
to the currently attached HDF vdata structure. If no data type keyword is specified,
the data type of the attribute value is used.

Syntax

HDF_VD_ATTRSET, VData, FieldID, Attr_Name, Values [, Count] [, /BYTE]
[, /DFNT_CHAR8] [, /DFNT_FLOAT32] [, /DFNT_FLOAT64] [, /DFNT_INT8]
[, /DFNT_INT16] [, /DFNT_INT32] [, /DFNT_UCHAR8] [, /DFNT_UINT8]
[, /DFNT_UINT16] [, /DFNT_UINT32] [, /DOUBLE] [, /FLOAT] [, /INT]
[, /LONG] [, /SHORT] [, /STRING] [, /UINT] [, /ULONG]

Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.

Note
The vdata structure must have been attached in write mode in order for attributes to
be correctly associated with a vdata or one of its fields. If the vdata is not write
accessible, HDF does not return an error; instead, the attribute information is
written to the file but is not associated with the vdata.

FieldID

A zero-based index specifying the field, or a string containing the name of the field
within the VData whose attribute is to be set. If FieldID is set to -1, the attribute will
be attached to the vdata itself.

Attr_Name

A string containing the name of the attribute to be written.
HDF_VD_ATTRSET What’s New in IDL 5.5

Chapter 6: New IDL Routines 257
Values

The attribute value(s) to be written.

Note
Attributes to be written as characters may not be a multi-dimensional array (e.g. if
being converted from byte values) or an array of IDL strings.

Count

An optional integer argument specifying how many values are to be written. Count
must be less than or equal to the number of elements in the Values argument. If not
specified, the actual number of values present will be written.

Keywords

BYTE

Set this keyword to indicate that the attribute is composed of bytes. Data will be
stored with the HDF DFNT_UINT8 data type. Setting this keyword is the same as
setting the DFNT_UINT8 keyword.

DFNT_CHAR8

Set this keyword to create an attribute of HDF type DFNT_CHAR8. Setting this
keyword is the same as setting the STRING keyword.

DFNT_FLOAT32

Set this keyword to create an attribute of HDF type DFNT_FLOAT32. Setting this
keyword is the same as setting the FLOAT keyword.

DFNT_FLOAT64

Set this keyword to create an attribute of HDF type DFNT_FLOAT64. Setting this
keyword is the same as setting the DOUBLE keyword.

DFNT_INT8

Set this keyword to create an attribute of HDF type DFNT_INT8.

DFNT_INT16

Set this keyword to create an attribute of HDF type DFNT_INT16. Setting this
keyword is the same as setting either the INT keyword or the SHORT keyword.
What’s New in IDL 5.5 HDF_VD_ATTRSET

258 Chapter 6: New IDL Routines
DFNT_INT32

Set this keyword to create an attribute of HDF type DFNT_INT32. Setting this
keyword is the same as setting the LONG keyword.

DFNT_UCHAR8

Set this keyword to create an attribute of HDF type DFNT_UCHAR8.

DFNT_UINT8

Set this keyword to create an attribute of HDF type DFNT_UINT8. Setting this
keyword is the same as setting the BYTE keyword.

DFNT_UINT16

Set this keyword to create an attribute of HDF type DFNT_UINT16.

DFNT_UINT32

Set this keyword to create an attribute of HDF type DFNT_UINT32.

DOUBLE

Set this keyword to indicate that the attribute is composed of double-precision
floating-point values. Data will be stored with the HDF type DFNT_FLOAT64.
Setting this keyword is the same as setting the DFNT_FLOAT64 keyword.

FLOAT

Set this keyword to indicate that the attribute is composed of single-precision
floating-point values. Data will be stored with the HDF type DFNT_FLOAT32 data
type. Setting this keyword is the same as setting the DFNT_FLOAT32 keyword.

INT

Set this keyword to indicate that the attribute is composed of 16-bit integers. Data
will be stored with the HDF type DFNT_INT16 data type. Setting this keyword is the
same as setting either the SHORT keyword or the DFNT_INT16 keyword.

LONG

Set this keyword to indicate that the attribute is composed of longword integers. Data
will be stored with the HDF type DFNT_INT32 data type. Setting this keyword is the
same as setting the DFNT_INT32 keyword.
HDF_VD_ATTRSET What’s New in IDL 5.5

Chapter 6: New IDL Routines 259
SHORT

Set this keyword to indicate that the attribute is composed of 16-bit integers. Data
will be stored with the HDF type DFNT_INT16 data type. Setting this keyword is the
same as setting either the INT keyword or the DFNT_INT16 keyword.

STRING

Set this keyword to indicate that the attribute is composed of strings. Data will be
stored with the HDF type DFNT_CHAR8 data type. Setting this keyword is the same
as setting the DFNT_CHAR8 keyword.

UINT

Set this keyword to indicate that the attribute is composed of unsigned 2-byte
integers. Data will be stored with the HDF type DFNT_UINT16 data type. Setting
this keyword is the same as setting the DFNT_UINT16 keyword.

ULONG

Set this keyword to indicate that the attribute is composed of unsigned longword
integers. Data will be stored with the HDF type DFNT_UINT32 data type. Setting
this keyword is the same as setting the DFNT_UINT32 keyword.

Example

; Open an HDF file.
fid = HDF_OPEN(FILEPATH('vattr_example.hdf',$

SUBDIRECTORY = ['examples', 'data']), /RDWR)

; Locate and attach an existing vdata.
vdref = HDF_VD_FIND(fid, 'MetObs')
vdid = HDF_VD_ATTACH(fid, vdref, /WRITE)

; Attach two attributes to the vdata.
HDF_VD_ATTRSET, vdid, -1, 'vdata_contents', $

'Ground station meteorological observations.'
HDF_VD_ATTRSET, vdid, -1, 'num_stations', 10

; Attach an attribute to one of the fields in the vdata.
HDF_VD_ATTRSET, vdid, 'TempDP', 'field_contents', $

'Dew point temperature in degrees Celsius.'

; Get the number of attributes associated with the vdata.
num_vdattr = HDF_VD_NATTRS(vdid, -1)
PRINT, 'Number of attributes attached to vdata MetObs: ', $

num_vdattr
What’s New in IDL 5.5 HDF_VD_ATTRSET

260 Chapter 6: New IDL Routines
; Get information for one of the vdata attributes by first finding
; the attribute's index number.
attr_index = HDF_VD_ATTRFIND(vdid, -1, 'vdata_contents')
HDF_VD_ATTRINFO, vdid, 1, attr_index, $

NAME = attr_name,DATA = metobs_contents
HELP, attr_name, metobs_contents

; Get information for another vdata attribute using the
; attribute's name.
HDF_VD_ATTRINFO, vdid, -1, 'num_stations', DATA = num_stations, $

HDF_TYPE = hdftype, TYPE = idltype
HELP, num_stations, hdftype,idltype
PRINT, num_stations

; Get the number of attributes attached to the vdata field
; TempDP.
num_fdattr = HDF_VD_NATTRS(vdid, 'TempDP')
PRINT, 'Number of attributes attached to field TempDP: ', $

num_fdattr

; Get the information for the vdata field attribute.
HDF_VD_ATTRINFO, vdid, 'TempDP', 'field_contents', $

COUNT = count, HDF_TYPE = hdftype, TYPE = idltype, $
DATA = dptemp_attr

HELP, count, hdftype, idltype, dptemp_attr

; End access to the vdata.
HDF_VD_DETACH, vdid

; Attach a vdata which stores one of the attribute values.
vdid = HDF_VD_ATTACH(fid, 5)

; Get the vdata's name and check to see that it is indeed storing
; an attribute.
HDF_VD_GET, vdid, NAME = vdname
isattr = HDF_VD_ISATTR(vdid)
HELP, vdname, isattr

; End access to the vdata and the HDF file.
HDF_VD_DETACH, vdid
HDF_CLOSE, fid

IDL Output

Number of attributes attached to vdata MetObs: 2
ATTR_NAME STRING = 'vdata_contents'
METOBS_CONTENTS STRING = 'Ground station meteorological
observations.'
HDF_VD_ATTRSET What’s New in IDL 5.5

Chapter 6: New IDL Routines 261
NUM_STATIONS INT = Array[1]
HDFTYPE STRING = 'DFNT_INT16'
IDLTYPE STRING = 'INT'

10
Number of attributes attached to field TempDP: 1
COUNT LONG = 41
HDFTYPE STRING = 'DFNT_CHAR8'
IDLTYPE STRING = 'STRING'
DPTEMP_ATTR STRING = 'Dew point temperature in degrees
Celsius.'
VDNAME STRING = 'field_contents'
ISATTR LONG = 1

See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRINFO, HDF_VD_ISATTR,
HDF_VD_NATTRS
What’s New in IDL 5.5 HDF_VD_ATTRSET

262 Chapter 6: New IDL Routines
HDF_VD_ISATTR

The HDF_VD_ISATTR function returns TRUE (1) if the vdata is storing an attribute,
FALSE (0) otherwise. HDF stores attributes as vdatas, so this routine provides a
means to test whether or not a particular vdata contains an attribute.

Syntax

Result = HDF_VD_ISATTR(VData)

Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.

Example

For an example using this routine, see the documentation for HDF_VD_ATTRSET.

See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRINFO, HDF_VD_ATTRSET,
HDF_VD_NATTRS
HDF_VD_ISATTR What’s New in IDL 5.5

Chapter 6: New IDL Routines 263
HDF_VD_NATTRS

The HDF_VD_NATTRS function returns the number of attributes associated with
the specified vdata or vdata/field pair if successful. Otherwise, –1 is returned.

Syntax

Result = HDF_ VD _NATTRS(VData, FieldID)

Arguments

VData

The VData handle returned by a previous call to HDF_VD_ATTACH.

FieldID

A zero-based index specifying the field, or a string containing the name of the field,
within the VData whose attributes are to be counted. Setting Index to –1 specifies that
attributes attached to the vdata itself are to be counted.

Example

For an example using this routine, see the documentation for HDF_VD_ATTRSET.

See Also

HDF_VD_ATTRFIND, HDF_VD_ATTRINFO, HDF_VD_ATTRSET,
HDF_VD_ISATTR
What’s New in IDL 5.5 HDF_VD_NATTRS

264 Chapter 6: New IDL Routines
HEAP_FREE

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When a valid pointer or object reference is
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In this way, all heap variables that
are referenced directly or indirectly by the input argument are located. Once all such
heap variables are identified, HEAP_FREE releases them in a final pass. Pointers are
released as if the PTR_FREE procedure was called. Objects are released as with a call
to OBJ_DESTROY.

As with the related HEAP_GC procedure, there are some disadvantages to using
HEAP_FREE such as:

• When freeing object heap variables, HEAP_FREE calls OBJ_DESTROY
without supplying any plain or keyword arguments. Depending on the objects
being released, this may not be sufficient. In such cases, the caller must call
OBJ_DESTROY explicitly with the proper arguments rather than using
HEAP_FREE.

• HEAP_FREE releases the referenced heap variables in an unspecified order
which depends on the current state of the internal data structure used by IDL to
hold them. This can be confusing for object destructor methods that expect all
of their contained data to be present. If your application requires a specific
order for the release of its heap variables, you must explicitly free them in the
correct order. HEAP_FREE cannot be used in such cases.

• The algorithm used by HEAP_FREE to release variables requires examination
of every existing heap variable (that is, it is an O(n) algorithm). This may be
slow if an IDL session has thousands of current heap variables.

For these reasons, Research Systems recommends that applications keep careful track
of their heap variable usage, and explicitly free them at the proper time (for example,
using the object destructor method) rather than resorting to simple-looking but
potentially expensive expedients such as HEAP_FREE or HEAP_GC.

HEAP_FREE is recommended when:

• The data structures involved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

• The data structures are opaque, and the code cleaning up does not have
knowledge of the structure.
HEAP_FREE What’s New in IDL 5.5

Chapter 6: New IDL Routines 265
Syntax

HEAP_FREE, Var [, /OBJ] [, /PTR] [, /VERBOSE]

Arguments

Var

The variable whose data is used as the starting point for heap variables to be freed.

Keywords

OBJ

Set this keyword to free object heap variables only.

PTR

Set this keyword to free pointer heap variables only.

Note
Setting both the PTR and OBJ keywords is the same as setting neither.

VERBOSE

If this keyword is set, HEAP_FREE writes a one line description of each heap
variable, in the format used by the HELP procedure, as the variable is released. This
is a debugging aid that can be used by program developers to check for heap variable
leaks that need to be located and eliminated.

Example

; Create a structure variable.
mySubStructure = {pointer:PTR_NEW(INDGEN(100)), $

obj:OBJ_NEW('Idl_Container')}
myStructure ={substruct:mySubStructure, $

ptrs:[PTR_NEW(INDGEN(10)), PTR_NEW(INDGEN(11))]}

;Look at the heap.
HELP, /HEAP_VARIABLES

; Now free the heap variables contained in myStructure.
HEAP_FREE, myStructure, /VERBOSE
HELP, /HEAP_VARIABLES
What’s New in IDL 5.5 HEAP_FREE

266 Chapter 6: New IDL Routines
See Also

HEAP_GC
HEAP_FREE What’s New in IDL 5.5

Chapter 6: New IDL Routines 267
INTERVAL_VOLUME

The new INTERVAL_VOLUME procedure is used to generate a tetrahedral mesh
from volumetric data. The generated mesh spans the portion of the volume where the
volume data samples fall between two constant data values. This can also be thought
of as a mesh constructed to fill the volume between two isosurfaces which are drawn
according to the two supplied constant data values. The algorithm is very similar to
the ISOSURFACE algorithm and expands upon the SHADE_VOLUME algorithm.
A topologically-consistent tetrahedral mesh is returned by decomposing the volume
into oriented tetrahedra. This also allows the algorithm to find the interval volume of
any tetrahedral mesh.

If an auxiliary array is provided, its data is interpolated onto the output vertices and is
returned. This auxiliary data array may have multiple values at each vertex. Any size-
leading dimension is allowed as long as the number of values in the subsequent
dimensions matches the number of elements in the input data array.

For more information on the INTERVAL_VOLUME algorithm, see the paper,
“Interval Volume Tetrahedrization”, Nielson and Sung, Proceedings: IEEE
Visualization, 1997.

Syntax

INTERVAL_VOLUME, Data, Value0, Value1, Outverts, Outconn
[, AUXDATA_IN=array, AUXDATA_OUT=variable]
[, GEOM_XYZ=array, TETRAHEDRA=array]

Arguments

Data

Input three-dimensional array of scalars that define the volume data.

Value0

Input scalar iso-value. This value specifies one of the limits for the interval volume.
The generated interval volume encloses all volume samples between and including
Value0 and Value1. Value0 may be greater than or less than Value1, but the two values
may not be exactly equal. This value also cannot be a NaN, but can be +/- INF.

Value1

Input scalar iso-value. This value specifies the other limit for the interval volume.
The generated interval volume encloses all volume samples between and including
What’s New in IDL 5.5 INTERVAL_VOLUME

268 Chapter 6: New IDL Routines
Value0 and Value1. Value1 may be greater than or less than Value0, but the two values
may not be exactly equal. This value also cannot be a NaN, but can be +/- INF.

Outverts

A named variable to contain an output [3, n] array of floating point vertices making
up the tetrahedral mesh.

Outconn

A named variable to contain an output array of tetrahedral mesh connectivity values.
This array is one-dimensional and consists of a series of four vertex indices, where
each group of four indices describes a tetrahedron. The connectivity values are
indices into the vertex array returned in Outverts. If no tetrahedra are extracted, this
argument returns the array [-1].

Keywords

AUXDATA_IN

This keyword defines the input array of auxiliary data with trailing dimensions being
the number of values in Data.

Note
If you specify the AUXDATA_IN then you must specify AUXDATA_OUT.

AUXDATA_OUT

Set this keyword to a named variable that will contain an output array of auxiliary
data sampled at the locations in Outverts.

Note
If you specify AUXDATA_OUT then you must specify AUXDATA_IN.

GEOM_XYZ

This keyword defines a [3, n] input array of vertex coordinates (one for each value in
the Data array). This array is used to define the spatial location of each scalar. If this
keyword is omitted, Data must be a three-dimensional array and the scalar locations
are assumed to be on a uniform grid.
INTERVAL_VOLUME What’s New in IDL 5.5

Chapter 6: New IDL Routines 269
Note
If you specify GEOM_XYZ then you must specify TETRAHEDRA.

TETRAHEDRA

This keyword defines an input array of tetrahedral connectivity values. If this array is
not specified, the connectivity is assumed to be a rectilinear grid over the input three-
dimensional array. If this keyword is specified, the input data array need not be a
three-dimensional array. Each tetrahedron is represented by four values in the
connectivity array. Every four values in the array correspond to the vertices of a
single tetrahedron.

Note
If you specify TETRAHEDRA then you must specify GEOM_XYZ.

Example

The following example generates an interval volume and displays the surface of the
volume:

RESTORE, FILEPATH('clouds3d.dat', $
SUBDIRECTORY=['examples','data'])

INTERVAL_VOLUME, rain, 0.1, 0.6, verts, conn
conn = TETRA_SURFACE(verts, conn)
oRain = OBJ_NEW('IDLgrPolygon', verts, POLYGONS=conn, $

COLOR=[255,255,255], SHADING=1)
XOBJVIEW, oRain, BACKGROUND=[150,200,255]

See Also

ISOSURFACE, SHADE_VOLUME, XVOLUME
What’s New in IDL 5.5 INTERVAL_VOLUME

270 Chapter 6: New IDL Routines
PATH_SEP

The PATH_SEP function returns the proper file path segment separator character for
the current operating system. This is the character used by the host operating system
for delimiting subdirectory names in a path specification. Use of this function instead
of hard wiring separators makes code more portable.

This routine is written in the IDL language. Its source code can be found in the file
path_sep.pro in the lib subdirectory of the IDL distribution.

Syntax

Result = PATH_SEP([/PARENT_DIRECTORY] [, /SEARCH_PATH])

Arguments

None.

Keywords

PARENT_DIRECTORY

If set, PATH_SEP returns the standard directory notation used by the host operating
system to indicate the parent of a directory.

SEARCH_PATH

If set, PATH_SEP returns the character used to separate entries in a search path.

See Also

FILEPATH, FILE_SEARCH
PATH_SEP What’s New in IDL 5.5

Chapter 6: New IDL Routines 271
QGRID3

The QGRID3 function linearly interpolates the dependent variable values to points in
a regularly sampled volume. Its inputs are a triangulation of scattered data points in
three dimensions, and the value of a dependent variable for each point.

Syntax

Result = QGRID3(XYZ, F, Tetrahedra [, DELTA=vector] [, DIMENSION=vector]
[, MISSING=value] [, START=vector])

or

Result = QGRID3(X, Y, Z, F, Tetrahedra [, DELTA=array] [, DIMENSION=array]
[, MISSING=value] [, START=array])

Return Value

Result is a 3-dimensional array of either single or double precision floating type, of
the specified dimensions.

Arguments

XYZ

This is a 3-by-n array containing the scattered points.

X, Y, Z

One-dimensional vectors containing the X, Y, and Z point coordinates.

Tetrahedra

A longword array containing the point indices of each tetrahedron, as created by
QHULL.

Keywords

Note
Any of the keywords may be set to a scalar if all elements are the same.
What’s New in IDL 5.5 QGRID3

272 Chapter 6: New IDL Routines
DELTA

A scalar or three element array specifying the grid spacing in X, Y, and Z. If this
keyword is not specified, it is set to create a grid of DIMENSION cells, enclosing the
volume from START to [max(x), max(y), max(z)].

DIMENSION

A three element array specifying the grid dimensions in X, Y, and Z. Default value is
25 for each dimension.

MISSING

The value to be used for grid points that lie outside the convex hull of the scattered
points. The default is 0.

START

A three element array specifying the start of the grid in X, Y, and Z. Default value is
[min(x), min(y), min(z)].

Example 1

This example interpolates a data set measured on an irregular grid.

; Create a dataset of N points.
n = 200
x = RANDOMU(seed, n)
y = RANDOMU(seed, n)
z = RANDOMU(seed, n)

; Create dependent variable.
f = x^2 - x*y + z^2 + 1

; Obtain a tetrahedra using the QHULL procedure.
QHULL, x, y, z, tet, /DELAUNAY

; Create a volume with dimensions [51, 51, 51]
; over the unit cube.
volume = QGRID3(x, y, z, f, tet, START=0, DIMENSION=51, $

DELTA=0.02)

; Display the volume.
XVOLUME, BYTSCL(volume)
QGRID3 What’s New in IDL 5.5

Chapter 6: New IDL Routines 273
Example 2

This example is similar to the previous one, however in this example we use a [3, n]
array of points.

; Create a dataset of N points.
n = 200
p = RANDOMU(seed, 3, n)

; Create dependent variable.
f = p[0,*]^2 - p[0,*]*p[1,*] + p[2,*]^2 + 1

; Obtain a tetrahedra.
QHULL, p, tet, /DELAUNAY

; Create a volume with dimensions [51, 51, 51] over the unit cube.
volume = QGRID3(p, f, tet, START=0, DIMENSION=51, DELTA=0.02)

; Display the volume.
XVOLUME, BYTSCL(volume)

Example 3

The following example uses the data from the irreg_grid2.txt ASCII file. This
file contains scattered three-dimensional data. This file contains bore hole data for a
square mile of land. The QHULL procedure is used to triangulate the three-
dimensional locations. The QGRID3 function uses the results from QHULL to grid
the data into a volume. The scattered data is displayed as symbol polyline objects in
the XOBJVIEW utility. The resulting gridded volume is displayed in the XVOLUME
utility:

; Import the Data:

; Determine the path to the file. This file contains bore hole
; data for a square mile of land. The bore hole samples were
; roughly taken diagonally from the upper left corner of the
; square to the lower right corner.
file = FILEPATH('irreg_grid2.txt', $

SUBDIRECTORY = ['examples', 'data'])

; Import the data from the file into a structure.
dataStructure = READ_ASCII(file)

; Get the imported array from the first field of
; the structure.
dataArray = TRANSPOSE(dataStructure.field1)
What’s New in IDL 5.5 QGRID3

274 Chapter 6: New IDL Routines
; Initialize the variables of this example from
; the imported array.
x = dataArray[*, 0]
y = dataArray[*, 1]
z = dataArray[*, 2]
data = dataArray[*, 3]

; Determine number of data points.
nPoints = N_ELEMENTS(data)

; Triangulate the Data with QHULL:

; Construct the convex hulls of the volume.
QHULL, x, y, z, tetrahedra, /DELAUNAY

; Grid the Data and Display the Results:

; Initialize volume parameters.
cubeSize = [51, 51, 51]
; Grid the data into a volume.
volume = QGRID3(x, y, z, data, tetrahedra, START = 0, $

DIMENSION = cubeSize, DELTA = 0.02)
; Scale the volume to be able to view the full data value range
; with the color tables provided in the XVOLUME utility.
scaledVolume = BYTSCL(volume)

; Display the results in the XVOLUME utility.
XVOLUME, scaledVolume

; Derive the isosurface for mineral deposits with the data value
; of 2.5.
ISOSURFACE, volume, 2.5, vertices, connectivity

; Initialize a model to contain the isosurface.
oModel = OBJ_NEW('IDLgrModel')

; Initialize the polygon object of the isosurface.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $

POLYGONS = connectivity, COLOR = [0, 0, 255])

; Determine the range in each direction.
xRange = [0, cubeSize[0]]
yRange = [0, cubeSize[1]]
zRange = [0, cubeSize[2]]
QGRID3 What’s New in IDL 5.5

Chapter 6: New IDL Routines 275
; Initialize an axis for each direction.
oAxes = OBJARR(3)
oAxes[0] = OBJ_NEW('IDLgrAxis', 0, RANGE = xRange, $

LOCATION = [xRange[0], yRange[0], zRange[0]], /EXACT, $
TICKLEN = (0.02*(yRange[1] - yRange[0])))

oAxes[1] = OBJ_NEW('IDLgrAxis', 1, RANGE = yRange, $
LOCATION = [xRange[0], yRange[0], zRange[0]], /EXACT, $
TICKLEN = (0.02*(xRange[1] - xRange[0])))

oAxes[2] = OBJ_NEW('IDLgrAxis', 2, RANGE = zRange, $
LOCATION = [xRange[0], yRange[1], zRange[0]], /EXACT, $
TICKLEN = (0.02*(xRange[1] - xRange[0])))

; Add the polygon and axes object to the model.
oModel -> Add, oPolygon
oModel -> Add, oAxes

; Rotate the model for a better perspective.
oModel -> Rotate, [0, 0, 1], 30.
oModel -> Rotate, [1, 0, 0], -45.

; Display the model, which contains the isosurface.
XOBJVIEW, oModel, /BLOCK, SCALE = 0.75, $

TITLE = 'Isosurface at the Value of 2.5'

; Cleanup object references.
OBJ_DESTROY, [oModel]

See Also

QHULL
What’s New in IDL 5.5 QGRID3

276 Chapter 6: New IDL Routines
QHULL

The QHULL procedure constructs convex hulls, Delaunay triangulations, and
Voronoi diagrams of a set of points of 2-dimensions or higher. It uses and is based on
the program QHULL, which is described in Barber, Dobkin and Huhdanpaa, “The
Quickhull Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No 4, December 1996, Pages 469-483.

For more information about QHULL see http://www.geom.umn.edu/software/qhull/.

Syntax

QHULL, V, Tr

or,

QHULL, V0 , V1, [, V2 ... [, V6]] , Tr [, BOUNDS=variable]
[, CONNECTIVITY=variable] [, /DELAUNAY] [, SPHERE=variable]
[, VDIAGRAM=array] [, VNORMALS=array] [, VVERTICES=array]

Arguments

V

An input argument providing an nd-by-np array containing the locations of np points,
in nd dimensions. The number of dimensions, nd, must be greater than or equal to 2.

V0, V1, V2, ..., V(N–1)

Input vectors of dimension np-by-1 elements each containing the i-th coordinate of
np points in nd dimensions. A maximum of seven input vectors may be specified.

Tr

An nd1-by-nt array containing the indices of either the convex hull (nd1 is equal to
nd), or the Delaunay triangulation (nd1 is equal to nd+1) of the input points.

Keywords

BOUNDS

If set to a variable name, return the indices of the points on the convex hull of the
input points.
QHULL What’s New in IDL 5.5

http://www.geom.umn.edu/software/qhull/

Chapter 6: New IDL Routines 277
CONNECTIVITY

Set this keyword to a named variable in which the adjacency list for each of the np
nodes is returned. The list has the following form:

Each element i, 0 ≤ i < np, contains the starting index of the connectivity list
(list) for node i within the list array. To obtain the adjacency list for node i,
extract the list elements from list[i] to list[i+1] – 1. The adjacency list is not
ordered. To obtain the connectivity list, either the DELAUNAY or SPHERE
keywords must also be specified.

For example, to perform a spherical triangulation, use the following procedure call:

QHULL, lon, lat, CONNECTIVITY = list

which returns the adjacency list in the variable list. The subscripts of the nodes
adjacent to lon[i] and lat[i] are contained in the array: list[list[i] :list[i+1] – 1].

DELAUNAY

Performs a Delaunay triangulation and returns the vertex indices of the resulting
polyhedra; otherwise, the convex hull of the data are returned.

SPHERE

Computes the Delaunay triangulation of the points which lie on the surface of a
sphere. The V0 argument contains the longitude, in degrees, and V1 contains the
latitude, in degrees, of each point.

VDIAGRAM

When specified, this keyword returns the connectivity of the Voronoi diagram in a 4-
by-nv integer array. For each Voronoi ridge, i, VDIAGRAM[0:1, i] contains the index
of the two input points the ridge bisects. VDIAGRAM[2:3, i] contains the indices of
the Voronoi vertices.

In the case of an unbounded half-space, VDIAGRAM[2, i] is set a negative index, j,
indicating that the corresponding Voronoi ridge is unbounded, and that the equation
for the ridge is contained in VNORMAL[*, –j], and starts at Voronoi vertex [3, i].

VNORMALS

When specified, this keyword returns the normals of each Voronoi ridge that is
unbounded. See the description of VDIAGRAM.

VVERTICES

When specified, this keyword returns the Voronoi vertices.
What’s New in IDL 5.5 QHULL

278 Chapter 6: New IDL Routines
Example

For some examples using the QHULL procedure, see the QGRID3 function.

See Also

QGRID3
QHULL What’s New in IDL 5.5

Chapter 6: New IDL Routines 279
QUERY_MRSID

The QUERY_MRSID function allows you to obtain information about a MrSID
image file without having to read the file. It is a wrapper around the object interface
that presents MrSID image loading in a familiar way to users of the QUERY_* image
routines. However this function is not as efficient as the object interface and the
object interface should be used whenever possible. See “IDLffMrSID” in Chapter 5
“New Objects” for information about the object interface.

Syntax

Result = QUERY_MRSID(Filename [, Info] [, LEVEL=lvl])

Return Value

Result is a long integer with the value of:

• 1 – If the query was successful (and the file type was correct).

• 0 – If the query fails.

Arguments

Filename

A scalar string containing the full path and filename of the MrSID file to query.

Info

Returns an anonymous structure containing information about the image in the file.
The Info.TYPE field will return the value 'MrSID'.

The anonymous structure is detailed in the QUERY_* Routines documentation.
However, the info structure filled in by QUERY_MRSID has additional members
appended to the end:

• info.LEVELS – a named variable that will contain a two-element integer
vector of the form [minlvl, maxlvl] that specifies the range of levels within the
current image. Higher levels are lower resolution. A level of 0 equals full
resolution. Negative values specify higher levels of resolution.

• Info.GEO_VALID – a long integer with a value of 1 if the file contains valid
georeferencing data, or 0 if the georeferencing data is nonexistent or
unsupported.
What’s New in IDL 5.5 QUERY_MRSID

280 Chapter 6: New IDL Routines
Note
Always verify that this keyword returns 1 before using the data returned by any
other GEO_* keyword.

• Info.GEO_PROJTYPE – unsigned integer.

• Info.GEO_ORIGIN – 2-element double precision array.

• Info.GEO_RESOLUTION – 2-element double precision array.

See “IDLffMrSID::GetProperty” in Chapter 5 for more information on GEO_*
values.

Keywords

LEVEL

Set this keyword to an integer that specifies the level to which the DIMENSIONS
field of the info structure corresponds. This can be used, for example, to determine
what level is required to fit the image into a certain area. If this keyword is not
specified, the dimensions at level 0 are returned.

Example

; Select the image file.
file = QUERY_MRSID(FILEPATH('test_gs.sid', $

SUBDIRECTORY=['examples', 'data']), info, LEVEL = -2)

HELP, file
; IDL returns 1 indicating the correct file type
; and successful query.

; Print the range of levels of resolution available within
; the file.
PRINT, 'Range of image levels = ', info.LEVELS

; Print the image dimensions when the image level is set to -2
; as specified by LEVEL = -2 in the QUERY_MRSID statement.
PRINT, 'dimensions of image at LEVEL is -2 =', info.DIMENSIONS
; IDL returns 2048 by 2048

; Check for valid georeferencing data.
PRINT, 'Result of georeferencing query', info.GEO_VALID
; IDL returns 0 indicating that the file does not contain
; georeferencing data.
QUERY_MRSID What’s New in IDL 5.5

Chapter 6: New IDL Routines 281
READ_MRSID

The new READ_MRSID function extracts and returns image data from a MrSID file
at the specified level and location. It is a wrapper around the object interface that
presents MrSID image loading in a familiar way to users of the READ_* image
routines. However this function is not as efficient as the object interface and the
object interface should be used whenever possible. See “IDLffMrSID” in Chapter 5
for information about the object interface.

Syntax

Result = READ_MRSID (Filename [, LEVEL=lvl] [, SUB_RECT=rect])

Return Value

ImageData returns an n-by-w-by-h array containing the image data where n is 1 for
grayscale or 3 for RGB images, w is the width and h is the height.

Note
The returned image is ordered bottom-up, the first pixel returned is located at the
bottom-left of the image. This differs from how data is stored in the MrSID file
where the image is top-down, meaning the pixel at the start of the file is located at
the top-left of the image.

Arguments

Filename

A scalar string containing the full path and filename of the MrSID file to read.

Keywords

LEVEL

Set this keyword to an integer that specifies the level at which to read the image. If
this keyword is not set, the maximum level (see QUERY_MRSID) is used which
returns the minimum resolution.

SUB_RECT

Set this keyword to a four-element vector [x, y, xdim, ydim] specifying the position
of the lower left-hand corner and the dimensions of the sub-rectangle of the MrSID
What’s New in IDL 5.5 READ_MRSID

282 Chapter 6: New IDL Routines
image to return. This is useful for displaying only a portion of the high-resolution
image. If this keyword is not set, the entire image will be returned. This may require
significant memory if a high-resolution level is selected. If the sub-rectangle is
greater than the bounds of the image at the selected level the area outside the image
bounds will be set to black.

Note
The elements of SUB_RECT are measured in pixels at the current level. This means
the point x = 10, y = 10 at level 1 will be located at x = 20, y = 20 at level 0 and
x = 5, y = 5 at level 2.

Example

; Query the file.
result = QUERY_MRSID(FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']), info)

; If result is not zero, read in an image from the file and
; display it.
IF (result NE 0) THEN BEGIN

PRINT, info
imageData = READ_MRSID(FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']), SUB_RECT = $
[0, 0, 200, 200], LEVEL = 3)

oImage = OBJ_NEW('IDLgrImage', imageData, ORDER = 0)
XOBJVIEW, oImage, BACKGROUND = [255,255,0]

ENDIF

; Use the file access object to query the file.
oMrSID = OBJ_NEW('IDLffMrSID', FILEPATH('test_gs.sid', $

SUBDIRECTORY = ['examples', 'data']))
oMrSID -> GetProperty, PIXEL_TYPE=pt, $

CHANNELS = chan, DIMENSIONS = dims, $
TYPE = type, LEVELS = lvls

PRINT, pt, chan, dims, type, lvls

; Use the object to read in an image from the file.
lvls = -3
dimsatlvl = oMrSID -> GetDimsAtLevel(lvls)
PRINT, dimsatlvl
imageData = oMrSID -> GetImageData(LEVEL = 3)
PRINT, size(imageData)
OBJ_DESTROY, oImage
READ_MRSID What’s New in IDL 5.5

Chapter 6: New IDL Routines 283
REAL_PART

The REAL_PART function returns the real part of its complex-valued argument. If
the complex-valued argument is double-precision, the result will be double-precision,
otherwise the result will be single-precision floating-point. If the argument is not
complex, then the result will be double-precision if the argument is double-precision,
otherwise the result will be single-precision.

Syntax

Result = REAL_PART(Z)

Arguments

Z

A scalar or array for which the real part is desired. Z may be of any numeric type.

Example

The following example demonstrates how you can use REAL_PART to obtain the
real parts of an array of complex variables.

; Create an array of complex values:
cValues = COMPLEX([1, 2, 3],[4, 5, 6])

; Print just the real parts of each element in cValues:
PRINT, REAL_PART(cValues)

IDL prints:

1.00000 2.00000 3.00000

See Also

COMPLEX, DCOMPLEX, IMAGINARY
What’s New in IDL 5.5 REAL_PART

284 Chapter 6: New IDL Routines
REGION_GROW

The REGION_GROW function performs region growing for a given region within
an N-dimensional array by finding all pixels within the array that are connected
neighbors to the region pixels and that fall within provided constraints. The
constraints are specified either as a threshold range (a minimum and maximum pixel
value) or as a multiple of the standard deviation of the region pixel values. If the
threshold is used (this is the default), the region is grown to include all connected
neighboring pixels that fall within the given threshold range. If the standard deviation
multiplier is used, the region is grown to include all connected neighboring pixels
that fall within the range of the mean (of the region's pixel values) plus or minus the
given multiplier times the sample standard deviation. REGION_GROW returns the
vector of array indices that represent pixels within the grown region. The grown
region will not include pixels at the edges of the input array. If no pixels fall within
the grown region, this function will return the value -1.

Syntax

Result = REGION_GROW(Array, ROIPixels [, /ALL_NEIGHBORS]
[, STDDEV_MULTIPLIER=value | THRESHOLD=[min,max]])

Arguments

Array

An N-dimensional array of data values. The region will be grown according to the
data values within this array.

ROIPixels

A vector of indices into Array that represent the initial region that is to be grown.

Keywords

ALL_NEIGHBORS

Set this keyword to indicate that all adjacent neighbors to a given pixel should be
considered during region growing (sometimes known as 8-neighbor searching when
the array is two-dimensional). The default is to search only the neighbors that are
exactly one unit in distance from the current pixel (sometimes known as 4-neighbor
searching when the array is two-dimensional).
REGION_GROW What’s New in IDL 5.5

Chapter 6: New IDL Routines 285
STDDEV_MULTIPLIER

Set this keyword to a scalar value that serves as the multiplier of the sample standard
deviation of the original region pixel values. The expanded region includes
neighboring pixels that fall within the range of the mean of the region’s pixel values
plus or minus the given multiplier times the sample standard deviation as follows:

Mean +/- StdDevMultiplier * StdDev

This keyword is mutually exclusive of THRESHOLD. If both keywords are
specified, a warning message will be issued and the THRESHOLD value will be
used.

THRESHOLD

Set this keyword to a two-element vector, [min,max], of the inclusive range within
which the pixel values of the grown region must fall. The default is the range of pixel
values within the initial region. This keyword is mutually exclusive of
STDDEV_MULTIPLIER. If both keywords are specified, a warning message will be
issued and the THRESHOLD value will be used.

Note
If neither keyword is specified, THRESHOLD is used by default. The range of
threshold values is based upon the pixel values within the original region and
therefore does not have to be provided.

Example

The following example demonstrates how you can grow a pre-defined region within
an image of human red blood cells.

; Load an image.
fname = FILEPATH('rbcells.jpg', SUBDIR=['examples','data'])
READ_JPEG, fname, img
imgDims = SIZE(img, /DIMENSIONS)

; Define original region pixels.
x = FINDGEN(16*16) MOD 16 + 276.
y = LINDGEN(16*16) / 16 + 254.
roiPixels = x + y * imgDims[0]

; Grow the region.
newROIPixels = REGION_GROW(img, roiPixels)

; Load a grayscale color table.
What’s New in IDL 5.5 REGION_GROW

286 Chapter 6: New IDL Routines
DEVICE, DECOMPOSED = 0
LOADCT, 0

; Set the topmost color table entry to red.
topClr = !D.TABLE_SIZE-1
TVLCT, 255, 0, 0, topClr

; Show the results.
tmpImg = BYTSCL(img, TOP=(topClr-1))
tmpImg[roiPixels] = topClr
WINDOW, 0, XSIZE=imgDims[0], YSIZE=imgDims[1], $

TITLE='Original Region'
TV, tmpImg

tmpImg = BYTSCL(img, TOP=(topClr-1))
tmpImg[newROIPixels] = topClr
WINDOW, 2, XSIZE=imgDims[0], YSIZE=imgDims[1], $

TITLE='Grown Region'
TV, tmpImg
REGION_GROW What’s New in IDL 5.5

Chapter 6: New IDL Routines 287
SIMPLEX

The SIMPLEX function uses the simplex method to solve linear programming
problems. Given a set of N independent variables Xi, where i = 1, ..., N, the simplex
method seeks to maximize the following function,

with the assumption that Xi ≥ 0. The Xi are further constrained by the following
equations:

where M = M1 + M2 + M3 is the total number of equations, and the constraint values
cj must all be positive.

To solve the above problem using the SIMPLEX function, the Z equation is rewritten
as a vector:

The constraint equations are rewritten as a matrix with N+1 columns and M rows,
where all of the b coefficients have had their sign reversed:

Note
The constraint matrix must be organized so that the coefficients for the less-than (<)
equations come first, followed by the coefficients of the greater-than (>) equations,
and then the coefficients of the equal (=) equations.

The Result is a vector of N+1 elements containing the maximum Z value and the
values of the N independent X variables (the optimal feasible vector):

Z a1X1 a2X2 …aNXN+ +=

bj1X1 bj2X2 …bjNXN+ + cj≤ j 1 2 … M1,,,=

bj1X1 bj2X2 …bjNXN cj≥+ + j M1 1+ M1 2+, …, M1 M2+,=

bj1X1 bj2X2 …bjNXN cj=+ + j M1 M2 1+ + M1 M2 2+ +, …, M,=

Zequation a1 a2 …aN
=

Constraints

c1 b– 11 b– 12… b– 1N

c2 b– 21 b– 22… b– 2N

:

:

:

:

:

:

cM b– M1 b– M2… b– MN

=

What’s New in IDL 5.5 SIMPLEX

288 Chapter 6: New IDL Routines
The SIMPLEX function is based on the routine simplx described in section 10.8 of
Numerical Recipes in C: The Art of Scientific Computing (Second Edition), published
by Cambridge University Press, and is used by permission.

Syntax

Result = SIMPLEX(Zequation, Constraints, M1, M2, M3
[, Tableau [, Izrov [, Iposv]]] [, /DOUBLE] [, EPS = value] [, STATUS = variable])

Arguments

Zequation

A vector containing the N coefficients of the Zequation to be maximized.

Constraints

An array of N+1 columns by M rows containing the constraint values and coefficients
for the constraint equations.

M1

An integer giving the number of less-than constraint equations contained in
Constraints. M1 may be zero, indicating that there are no less than constraints.

M2

An integer giving the number of greater-than constraint equations contained in
Constraints. M2 may be zero, indicating that there are no greater than constraints.

M3

An integer giving the number of equal-to constraint equations contained in
Constraints. M3 may be zero, indicating that there are no equal to constraints. The
total of M1 + M2 + M3 should equal M, the number of constraint equations.

Tableau

Set this optional argument to a named variable in which to return the output array
from the simplex algorithm. For more detailed discussion about this argument, see
the write-up in section 10.8 of Numerical Recipes in C.

Result Zmax X1 X2…XN
=

SIMPLEX What’s New in IDL 5.5

Chapter 6: New IDL Routines 289
Izrov

Set this optional argument to a named variable in which to return the output izrov
variable from the simplex algorithm. For more detailed discussion about this
argument, see the write-up in section 10.8 of Numerical Recipes in C.

Iposv

Set this optional argument to a named variable in which to return the output iposv
variable from the simplex algorithm. For more detailed discussion about this
argument, see the write-up in section 10.8 of Numerical Recipes in C.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-
precision result. Set DOUBLE to 0 to use single-precision for computations and to
return a single-precision result. The default is /DOUBLE if any of the inputs are
double-precision, otherwise the default is 0.

EPS

Set this keyword to a number close to machine accuracy, which is used to test for
convergence at each iteration. The default is 10–6.

STATUS

Set this keyword to a named variable to receive the status of the operation. Possible
status values are:

Example

The following example is taken from Numerical Recipes in C.

Value Description

0 Successful completion.

1 The objective function is unbounded.

2 No solution satisfies the given constraints.

3 The routine did not converge.

Table 6-3: SIMPLEX Function Status Values
What’s New in IDL 5.5 SIMPLEX

290 Chapter 6: New IDL Routines
Find the Z value which maximizes the equation Z = X1 + X2 + 3 X3 - 0.5 X4, with the
following constraints:

To find the solution, enter the following code at the IDL command line:

; Set up the Zequation with the X coefficients.
Zequation = [1,1,3,-0.5]
; Set up the Constraints matrix.
Constraints = [$

[740, -1, 0, -2, 0], $
[0, 0, -2, 0, 7], $
[0.5, 0, -1, 1, -2], $
[9, -1, -1, -1, -1]]

; Number of less-than constraint equations.
m1 = 2
; Number of greater-than constraint equations.
m2 = 1
; Number of equal constraint equations.
m3 = 1
;
; Call the function.
result = SIMPLEX(Zequation, Constraints, m1, m2, m3)
;
; Print out the results.
PRINT, 'Maximum Z value is: ', result[0]
PRINT, 'X coefficients are: '
PRINT, result[1:*]

IDL prints:

Maximum Z value is: 17.0250
X coefficients are:

0.000000 3.32500 4.72500 0.950000

Therefore, the optimal feasible vector is X1 = 0.0, X2 = 3.325, X3 = 4.725, and
X4 = 0.95.

See Also

AMOEBA, DFPMIN, POWELL

X1 2X3 740≤+

2X2 7X4– 0≤

X2 X3– 2X4+ 0.5≥
X1 X2 X3 X4+ + + 9=
SIMPLEX What’s New in IDL 5.5

Chapter 6: New IDL Routines 291
WIDGET_ACTIVEX

The WIDGET_ACTIVEX function is used to create an ActiveX control in IDL and
also to place it into an IDL widget hierarchy. The program or class ID of the
underlying IDL object that represents the ActiveX control is retrieved using the
GET_VALUE keyword of WIDGET_CONTROL. This is similar to the operations
used to get the window object from an IDL draw widget.

Note
IDL ActiveX functionality is only supported on the Windows NT and Windows
2000 platforms.

Note
This is the only method to create an IDL object that represents an ActiveX control.
Creating an ActiveX control (an object based off the class name prefix
IDLcomActiveX$) using OBJ_NEW() is not supported and the results are
undefined.

Note
All ActiveX based objects created in IDL sub-class from the intrinsic IDL class
IDLcomActiveX, which is a sub-class from IDLcomIDispatch.

Syntax

Result = WIDGET_ACTIVEX(Parent, COM_ID, [, /ALIGN_BOTTOM | ,
/ALIGN_CENTER | , /ALIGN_LEFT | , /ALIGN_RIGHT | , /ALIGN_TOP]
[, EVENT_FUNC=string] [, EVENT_PRO=string] [, FUNC_GET_VALUE=string]
[ID_TYPE=value] [, KILL_NOTIFY=string] [, /NO_COPY]
[, NOTIFY_REALIZE=string] [, PRO_SET_VALUE=string] [, SCR_XSIZE=width]
[, SCR_YSIZE=height] [, /SENSITIVE] [, UNAME=string] [, UNITS={0 | 1 | 2}]
[, UVALUE=value] [, XOFFSET=value] [, XSIZE=value] [, YOFFSET=value]
[, YSIZE=value])

Arguments

Parent

The widget ID of the parent widget of the new ActiveX control.
What’s New in IDL 5.5 WIDGET_ACTIVEX

292 Chapter 6: New IDL Routines
COM_ID

The class or program ID of the COM object to create.

Note
The provided Class ID or program ID must follow the standard Microsoft naming
convention. So Class IDs will contain '{}' brackets and use '-' as a separator and
Program IDs will use a '.' for a separator. The use of '_' is only used with IDispatch
objects in the call to OBJ_NEW() because the object name must follow standard
IDL object naming syntax.

Keywords

ALIGN_BOTTOM

Set this keyword to align the new widget with the bottom of its parent base. To take
effect, the parent must be a ROW base.

ALIGN_CENTER

Set this keyword to align the new widget with the center of its parent base. To take
effect, the parent must be a ROW or COLUMN base. In ROW bases, the new widget
will be vertically centered. In COLUMN bases, the new widget will be horizontally
centered.

ALIGN_LEFT

Set this keyword to align the new widget with the left side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_RIGHT

Set this keyword to align the new widget with the right side of its parent base. To take
effect, the parent must be a COLUMN base.

ALIGN_TOP

Set this keyword to align the new widget with the top of its parent base. To take
effect, the parent must be a ROW base.

EVENT_FUNC

A string containing the name of a function to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.
WIDGET_ACTIVEX What’s New in IDL 5.5

Chapter 6: New IDL Routines 293
EVENT_PRO

A string containing the name of a procedure to be called by the WIDGET_EVENT
function when an event arrives from a widget in the widget hierarchy rooted at the
newly-created widget.

Note
If the base is a top-level base widget that is managed by the XMANAGER
procedure, any value specified via the EVENT_PRO keyword is overridden by the
value of the EVENT_HANDLER keyword to XMANAGER. Note also that in this
situation, if EVENT_HANDLER is not specified in the call to XMANAGER, an
event-handler name will be created by appending the string “_event” to the
application name specified to XMANAGER. This means that there is no reason to
specify this keyword for a top-level base that will be managed by the XMANAGER
procedure.

FUNC_GET_VALUE

A string containing the name of a function to be called when the GET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to change the value that should be returned for a widget.
Compound widgets use this ability to define their values transparently to the user.

ID_TYPE

The type of COM control ID passed in (class or program). If set to 0, the ID is a class
ID (the default) and if set to 1, the ID is a program ID.

The following keywords are accepted by all IDL Widget types and are also accepted
by WIDGET_ACTIVEX. The keywords are only enumerated in this specification.
For details on how they operate, consult the IDL Reference Guide.

KILL_NOTIFY

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget dies. Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string ('').
Note that the procedure specified is used only if you are not using the XMANAGER
procedure to manage your widgets.

The callback routine is called with the widget identifier as its only argument. At that
point, the widget identifier can only be used with the WIDGET_CONTROL
procedure to get or set the user value. All other requests that require a widget ID are
What’s New in IDL 5.5 WIDGET_ACTIVEX

294 Chapter 6: New IDL Routines
disallowed for the target widget. The callback is not issued until the
WIDGET_EVENT function is called.

If you use the XMANAGER procedure to manage your widgets, the value of this
keyword is overwritten. Use the CLEANUP keyword to XMANAGER to specify a
procedure to be called when a managed widget dies.

NO_COPY

Usually, when setting or getting widget user values, either at widget creation or using
the SET_UVALUE and GET_UVALUE keywords to WIDGET_CONTROL, IDL
makes a second copy of the data being transferred. Although this technique is fine for
small data, it can have a significant memory cost when the data being copied is large.

If the NO_COPY keyword is set, IDL handles these operations differently. Rather
than copy the source data, it takes the data away from the source and attaches it
directly to the destination. This feature can be used by compound widgets to obtain
state information from a UVALUE without all the memory copying that would
otherwise occur. However, it has the side effect of causing the source variable to
become undefined. On a “set” operation (using the UVALUE keyword to
WIDGET_BASE or the SET_UVALUE keyword to WIDGET_CONTROL), the
variable passed as value becomes undefined. On a “get” operation (GET_UVALUE
keyword to WIDGET_CONTROL), the user value of the widget in question becomes
undefined.

NOTIFY_REALIZE

Set this keyword to a string that contains the name of a procedure to be called
automatically when the specified widget is realized. This callback occurs just once
(because widgets are realized only once). Each widget is allowed a single such
callback procedure. It can be removed by setting the routine to the null string ('').
The callback routine is called with the widget ID as its only argument.

PRO_SET_VALUE

A string containing the name of a procedure to be called when the SET_VALUE
keyword to the WIDGET_CONTROL procedure is called for this widget. Using this
technique allows you to designate a routine that sets the value for a widget.
Compound widgets use this ability to define their values transparently to the user.

SCR_XSIZE

Set this keyword to the desired “screen” width of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the XSIZE keyword.
WIDGET_ACTIVEX What’s New in IDL 5.5

Chapter 6: New IDL Routines 295
SCR_YSIZE

Set this keyword to the desired “screen” height of the widget, in units specified by the
UNITS keyword (pixels are the default). In many cases, setting this keyword is the
same as setting the YSIZE keyword.

SENSITIVE

Set this keyword to control the initial sensitivity state of the widget.

If SENSITIVE is zero, the widget becomes insensitive. If nonzero, it becomes
sensitive. When a widget is sensitive, it has normal appearance and can receive user
input. For example, a sensitive button widget can be activated by moving the mouse
cursor over it and pressing a mouse button. When a widget is insensitive, it indicates
the fact by changing its appearance, looking disabled, and it ignores any input.

Sensitivity can be used to control when a user is allowed to manipulate the widget.
Note that some widgets do not change their appearance when they are made
insensitive, but they cease generating events.

After creating the widget hierarchy, you can change the sensitivity state using the
SENSITIVE keyword with the WIDGET_CONTROL procedure.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET_INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy because the FIND_BY_UNAME keyword returns the ID of the widget
with the specified name.

UNITS

Set UNITS equal to 0 (zero) to specify that all measurements are in pixels (this is the
default), to 1 (one) to specify that all measurements are in inches, or to 2 (two) to
specify that all measurements are in centimeters.

UVALUE

The “user value” to be assigned to the widget.

Each widget can contain a user-specified value of any data type and organization.
This value is not used by the widget in any way, but exists entirely for the
What’s New in IDL 5.5 WIDGET_ACTIVEX

296 Chapter 6: New IDL Routines
convenience of the IDL programmer. This keyword allows you to set this value when
the widget is first created.

If UVALUE is not present, the widget’s initial user value is undefined.

The user value for a widget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XOFFSET

The horizontal offset of the widget in units specified by the UNITS keyword (pixels
are the default) relative to its parent.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

XSIZE

The width of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.

YOFFSET

The vertical offset of the widget in units specified by the UNITS keyword (pixels are
the default) relative to its parent. This offset is specified relative to the upper left
corner of the parent widget.

Specifying an offset relative to a row or column major base widget does not work
because those widgets enforce their own layout policies. This keyword is primarily of
use relative to a plain base widget. Note that it is best to avoid using this style of
widget layout.

YSIZE

The height of the widget in units specified by the UNITS keyword (pixels are the
default). Most widgets attempt to size themselves to fit the situation. However, if the
desired effect is not produced, use this keyword to override it. This keyword is only a
“hint” to the toolkit and may be ignored in some situations.
WIDGET_ACTIVEX What’s New in IDL 5.5

Chapter 6: New IDL Routines 297
Examples

For examples using WIDGET_ACTIVEX, see Chapter 3, “Using COM Objects
in IDL”.
What’s New in IDL 5.5 WIDGET_ACTIVEX

298 Chapter 6: New IDL Routines
WIDGET_DISPLAYCONTEXTMENU

The WIDGET_DISPLAYCONTEXTMENU procedure displays a shortcut menu
(otherwise known as a context sensitive or pop-up menu). After buttons for the
context menu have been created a context menu can be displayed using
WIDGET_DISPLAYCONTEXTMENU. This is normally called in an event handler
that has processed a context menu event. This procedure takes the ID of the widget
that is the parent of the context menu, the x and y location to display the menu, and
the ID of the context menu base. The ID would normally be the event.id value of the
context menu event, and the x and y locations also come from the context event. As
stated above, there may be multiple context menus for a particular widget. The last
parameter of WIDGET_DISPLAYCONTEXTMENU allows the user to specify
which menu to display. In the case of a draw widget that is the parent of a context
menu, the x and y locations can be obtained from the button event structure.

When WIDGET_DISPLAYCONTEXTMENU is called it displays the context menu
and handles the native event if the user selects a button. If a button is selected a user
button event is generated and the menu is dismissed. If no button is selected (the user
clicks elsewhere on the screen) then the menu is dismissed and no user event is
generated. Normally no further processing would be done in the context event or
draw event handler after calling WIDGET_DISPLAYCONTEXTMENU. The new
user event is queued and will be handled in a new call to the event handler.

Syntax

WIDGET_DISPLAYCONTEXTMENU, Parent, X, Y, ContextBase_ID

Arguments

Parent

The widget ID of the parent of a context menu.

X

The x location, relative to the parent widget, to display the menu.

Y

The y location, relative to the parent widget, to display the menu.
WIDGET_DISPLAYCONTEXTMENU What’s New in IDL 5.5

Chapter 6: New IDL Routines 299
ContextBase_ID

The widget ID of the context menu base that is the head of the menu to display. Use
the CONTEXT_MENU keyword to WIDGET_BASE to create a context menu base.
This base must be a child of the widget supplied with the Parent argument.

Keywords

None.

Examples

For examples using WIDGET_DISPLAYCONTEXTMENU, see Chapter 4, “Using
the Shortcut Menu Widget”.
What’s New in IDL 5.5 WIDGET_DISPLAYCONTEXTMENU

300 Chapter 6: New IDL Routines
XOBJVIEW_ROTATE

The XOBJVIEW_ROTATE procedure is used to programmatically rotate the object
currently displayed in XOBJVIEW. XOBJVIEW must be called prior to calling
XOBJVIEW_ROTATE. This procedure can be used to create animations of object
displays.

This routine is written in the IDL language. Its source code can be found in the file
xobjview_rotate.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XOBJVIEW_ROTATE, Axis, Angle [, /PREMULTIPLY]

Arguments

Axis

A 3-element vector of the form [x, y, z] describing the axis about which the model is
to be rotated.

Angle

The amount of rotation, measured in degrees.

Keywords

PREMULTIPLY

Set this keyword to cause the rotation matrix specified by Axis and Angle to be pre-
multiplied to the model’s transformation matrix. By default, the rotation matrix is
post-multiplied.

Example

The following example creates an animation of the test object (a surface) currently
displayed in XOBJVIEW. It does this by rotating the surface through 360 degrees in
increments of 10 degrees using XOBJVIEW_ROTATE, and writing the display
image to a BMP file for each increment using XOBJVIEW_WRITE_IMAGE.
XOBJVIEW_ROTATE What’s New in IDL 5.5

Chapter 6: New IDL Routines 301
PRO RotateAndWriteObject

XOBJVIEW, /TEST
FOR i = 0, 359 DO BEGIN

XOBJVIEW_ROTATE, [0, 1, 0], 1, /PREMULTIPLY;
XOBJVIEW_WRITE_IMAGE, ’ img’ + $
STRCOMPRESS(i, /REMOVE_ALL) + ’ .bmp’ , ’ bmp’

ENDFOR

END

See Also

XOBJVIEW, XOBJVIEW_WRITE_IMAGE
What’s New in IDL 5.5 XOBJVIEW_ROTATE

302 Chapter 6: New IDL Routines
XOBJVIEW_WRITE_IMAGE

The XOBJVIEW_WRITE_IMAGE procedure is used to write the object currently
displayed in XOBJVIEW to an image file with the specified name and file format.
XOBJVIEW must be called prior to calling XOBJVIEW_WRITE_IMAGE.

This routine is written in the IDL language. Its source code can be found in the file
xobjview_write_image.pro in the lib/utilities subdirectory of the IDL
distribution.

Syntax

XOBJVIEW_WRITE_IMAGE, Filename, Format [, DIMENSIONS=[x, y]]

Arguments

Filename

A scalar string containing the name of the file to write.

Format

A scalar string containing the name of the file format to write. See QUERY_IMAGE
for a list of supported formats.

Keywords

DIMENSIONS

Set this keyword to a 2-element vector of the form [x, y] specifying the size of the
output image, in pixels. If this keyword is not specified, the image will be written
using the dimensions of the current XOBJVIEW draw widget.

Example

See XOBJVIEW_ROTATE.

See Also

XOBJVIEW, XOBJVIEW_ROTATE
XOBJVIEW_WRITE_IMAGE What’s New in IDL 5.5

Chapter 6: New IDL Routines 303
XROI

The XROI procedure is an existing procedure but has been enhanced substantially in
IDL 5.5. This utility is used for interactively defining regions of interest (ROIs), and
obtaining geometry and statistical data about these ROIs.

This routine is written in the IDL language. Its source code can be found in the file
xroi.pro in the lib/utilities subdirectory of the IDL distribution.

Syntax

XROI [, ImageData] [, R] [, G] [, B] [, /BLOCK]
[[, /FLOATING] , GROUP=widget_ID] [, /MODAL] [, REGIONS_IN=value]
[, REGIONS_OUT=value] [, REJECTED=variable] [, RENDERER={0 | 1}]
[, ROI_COLOR=[r, g, b] or variable] [, ROI_GEOMETRY=variable]
[, ROI_SELECT_COLOR=[r, g, b] or variable] [, STATISTICS=variable]
[, TITLE=string] [, TOOLS=string/string array {valid values are 'Translate-Scale',
'Rectangle', 'Ellipse', 'Freehand Draw', 'Polygon Draw', and 'Selection'}]

Arguments

ImageData

ImageData is both an input and output argument. It is an array representing an 8-bit
or 24-bit image to be displayed. ImageData can be any of the following:

• [m, n] — 8-bit image

• [3, m, n] — 24-bit image

• [m, 3, n] — 24-bit image

• [m, n, 3] — 24-bit image

If ImageData is not supplied, the user will be prompted for a file via
DIALOG_PICKFILE. On output, ImageData will be set to the current image data.
(The current image data can be different than the input image data if the user
imported an image via the File → Import Image menu item.)

R, G, B

R, G, and B are arrays of bytes representing red, green, or blue color table values,
respectively. R, G, and B are both input and output arguments. On input, these values
are applied to the image if the image is 8-bit. To get the red, green, or blue color table
values for the image on output from XROI, specify a named variable for the
What’s New in IDL 5.5 XROI

304 Chapter 6: New IDL Routines
appropriate argument. (If the image is 24-bit, this argument will output a 256-element
byte array containing the values given at input, or BINDGEN(256) if the argument
was undefined on input.)

Keywords

BLOCK

Set this keyword to have XMANAGER block when this application is registered. By
default, BLOCK is set equal to zero, providing access to the command line if active
command line processing is available. Note that setting the BLOCK keyword causes
all widget applications to block, not just this application. For more information, see
the documentation for the NO_BLOCK keyword to XMANAGER.

Note
Only the outermost call to XMANAGER can block. Therefore, to have XROI
block, any earlier calls to XMANAGER must have been called with the
NO_BLOCK keyword. See the documentation for the NO_BLOCK keyword to
XMANAGER for an example.

FLOATING

Set this keyword, along with the GROUP keyword, to create a floating top-level base
widget. If the windowing system provides Z-order control, floating base widgets
appear above the base specified as their group leader. If the windowing system does
not provide Z-order control, the FLOATING keyword has no effect.

Note
Floating widgets must have a group leader. Setting this keyword without also
setting the GROUP keyword causes an error.

GROUP

Set this keyword to the widget ID of the widget that calls XROI. When this keyword
is specified, the death of the caller results in the death of XROI.

MODAL

Set this keyword to block other IDL widgets from receiving events while XROI is
active.
XROI What’s New in IDL 5.5

Chapter 6: New IDL Routines 305
REGIONS_IN

Set this keyword to an array of IDLgrROI references. This allows you to open XROI
with previously defined regions of interest (see Example 3). This is also useful when
using a loop to open multiple images in XROI. By using the same named variable for
both the REGIONS_IN and REGIONS_OUT keywords, you can reuse the same
ROIs in multiple images (see Example 2). This keyword also accepts –1, or
OBJ_NEW() (Null object) to indicate that there are no ROIs to read in. This allows
you to assign the result of a previous REGIONS_OUT to REGIONS_IN without
worrying about the case where the previous REGIONS_OUT is undefined.

REGIONS_OUT

Set this keyword to a named variable that will contain an array of IDLgrROI
references. This keyword is assigned the null object reference if there are no ROIs
defined. By using the same named variable for both the REGIONS_IN and
REGIONS_OUT keywords, you can reuse the same ROIs in multiple images (see
Example 2).

REJECTED

Set this keyword to a named variable that will contain those REGIONS_IN that are
not in REGIONS_OUT. The objects defined in the variable specified for REJECTED
can be destroyed with a call to OBJ_DESTROY, allowing you to perform cleanup on
objects that are not required (see Example 2). This keyword is assigned the null
object reference if no REGIONS_IN are rejected by the user.

RENDERER

Set this keyword to an integer value to indicate which graphics renderer to use when
drawing objects within the window. Valid values are:

• 0 = Platform native OpenGL

• 1 = IDL’s software implementation (the default)

ROI_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are not
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Unselected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → ROI Outline Colors). If this keyword is
assigned a named variable, that variable will be set to the current [r, g, b] value at the
time that XROI returns.
What’s New in IDL 5.5 XROI

306 Chapter 6: New IDL Routines
ROI_GEOMETRY

Set this keyword to a named variable that will contain an array of anonymous
structures, one for each ROI that is valid when this routine returns. The structures
will contain the following fields:

If there are no valid regions of interest when this routine returns, ROI_GEOMETRY
will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for ROI_GEOMETRY to be defined upon exit from XROI.
Otherwise, XROI will return before an ROI can be defined, and ROI_GEOMETRY
will therefore be undefined.

ROI_SELECT_COLOR

This keyword is both an input and an output parameter. Set this keyword to a
3-element byte array, [r, g, b], indicating the color of ROI outlines when they are
selected. This color will be used by XROI unless and until the color is changed by the
user via the “Selected Outline Color” portion of the “ROI Outline Colors” dialog
(which is accessed by selecting Edit → ROI Outline Colors). If this keyword is
assigned a named variable, that variable will be set to the current [r, g, b] value at the
time that XROI returns.

Field Description

area The area of the region of interest, in square pixels.

centroid The coordinates (x, y, z) of the centroid of the region
of interest, in pixels.

perimeter The perimeter of the region of interest, in pixels.

Table 6-4: Fields of the structure returned by ROI_GEOMETRY
XROI What’s New in IDL 5.5

Chapter 6: New IDL Routines 307
STATISTICS

Set this keyword to a named variable to receive an array of anonymous structures,
one for each ROI that is valid when this routine returns. The structures will contain
the following fields:

If ImageData is 24-bit, or if there are no valid regions of interest when the routine
exits, STATISTICS will be undefined.

Note
If there are no REGIONS_IN, XROI must either be modal or must block control
flow in order for STATISTICS to be defined upon exit from XROI. Otherwise,
XROI will return before an ROI can be defined, and STATISTICS will therefore be
undefined.

TITLE

Set this keyword to a string to appear in the XROI title bar.

TOOLS

Set this keyword a string or vector of strings from the following list to indicate which
ROI manipulation tools should be supported when XROI is run:

• 'Translate-Scale' — Translation and scaling of ROIs. Mouse down inside the
bounding box selects a region, mouse motion translates (repositions) the
region. Mouse down on a scale handle of the bounding box enables scaling
(stretching, enlarging and shrinking) of the region according to mouse motion.
Mouse up finishes the translation or scaling.

Field Description

count Number of pixels in region.

minimum Minimum pixel value.

maximum Maximum pixel value.

mean Mean pixel value.

stddev Standard deviation of pixel values.

Table 6-5: Fields of the structure returned by STATISTICS
What’s New in IDL 5.5 XROI

308 Chapter 6: New IDL Routines
• 'Rectangle' — Rectangular ROI drawing. Mouse down positions one corner of
the rectangle, mouse motions creates the rectangle, positioning the rectangle’s
opposite corner, mouse up finishes the rectangular region.

• 'Ellipse' — Elliptical ROI drawing. Mouse down positions the center of the
ellipse, mouse motion positions the corner of the ellipse’s imaginary bounding
box, mouse up finishes the elliptical region.

• 'Freehand Draw' — Freehand ROI drawing. Mouse down begins a region,
mouse motion adds vertices to the region (following the path of the mouse),
mouse up finishes the region.

• 'Polygon Draw' — Polygon ROI drawing. Mouse down begins a region,
subsequent mouse clicks add vertices, double-click finishes the region.

• 'Selection' — ROI selection. Mouse down/up selects the nearest region. The
nearest vertex in that region is identified with a crosshair symbol.

If more than one string is specified, a series of bitmap buttons will appear at the top of
the XROI widget in the order specified (to the right of the fixed set of bitmap buttons
used for saving regions, displaying region information, copying to clipboard, and
flipping the image). If only one string is specified, no additional bitmap buttons will
appear, and the manipulation mode is implied by the given string. If this keyword is
not specified, bitmap buttons for all three manipulation tools are included on the
XROI toolbar.
XROI What’s New in IDL 5.5

Chapter 6: New IDL Routines 309
Using XROI

XROI displays a top-level base with a menu, toolbar and draw widget. After defining
an ROI, the ROI Information window appears, as shown in the following figure:

As you move the mouse over an image, the x and y pixel locations are shown in the
status line on the bottom of the XROI window. For 8-bit images, the data value (z) is
also shown. If an ROI is defined, the status line also indicates the mouse position
relative to the ROI using the text “Inside”, “Outside”, “On Edge,” or “On Vertex.”

The XROI Toolbar

The XROI toolbar contains the following buttons:

Figure 6-1: The XROI Utility

Save:
Opens a file selection dialog for saving the currently defined
ROIs to a save file.

Info: Opens the ROI Information window.

Copy: Copies the contents of the display area to the clipboard.

Flip:
Flips image vertically. Note that only the image is flipped;
any ROIs that have been defined do not move.
What’s New in IDL 5.5 XROI

310 Chapter 6: New IDL Routines
Depending on the value of the TOOLS keyword, the XROI toolbar may also contain
the following buttons:

Importing an Image into XROI

To import an image into XROI, select File → Import Image. This opens a
DIALOG_READ_IMAGE dialog, which can be used to preview and select an image.

Changing the Image Color Table

To change the color table properties for the current image, select Edit → Image
Color Table. This opens the CW_PALETTE_EDITOR dialog, which is a compound
widget used to edit color palettes. See CW_PALETTE_EDITOR for more
information. This menu item is grayed out if the image does not have a color palette.

Translate/
Scale:

Click this button to translate or scale ROIs. Mouse down
inside the bounding box selects a region, mouse motion
translates (repositions) the region. Mouse down on a scale
handle of the bounding box enables scaling (stretching,
enlarging and shrinking) of the region according to mouse
motion. Mouse up finishes the translation or scaling.

Draw
Rectangle:

Click this button to draw rectangular ROIs. Mouse down
positions one corner of the rectangle, mouse motions creates
the rectangle, positioning the rectangle’s opposite corner,
mouse up finishes the rectangular region.

Draw
Ellipse:

Click this button to draw elliptical ROIs. Mouse down
positions the center of the ellipse, mouse motion positions
the corner of the ellipse’s imaginary bounding box, mouse
up finishes the elliptical region.

Draw
Freehand:

Click this button to draw freehand ROIs. Mouse down
begins a region, mouse motion adds vertices to the region
(following the path of the mouse), mouse up finishes the
region.

Draw
Polygon:

Click this button to draw polygon ROIs. Mouse down
begins a region, subsequent mouse clicks add vertices,
double-click finishes the region.

Select:
Click this button to select an ROI region. Clicking the image
causes a cross hairs symbol to be drawn at the nearest vertex
of the selected ROI.
XROI What’s New in IDL 5.5

Chapter 6: New IDL Routines 311
Changing the ROI Outline Colors

To change the outline colors for selected and unselected ROIs, select Edit → ROI
Outline Colors. This opens the ROI Outline Colors dialog, which consists of two
CW_RGBSLIDER widgets for interactively adjusting the ROI outline colors. The
left widget is used to define the color for the selected ROI, and the right widget is
used to define the color of unselected ROIs. You can select the RGB, CMY, HSV, or
HLS color system from the Color System drop-down list.

Viewing ROI Information

To view geometry and statistical data about the currently selected ROI, click the Info
button or select Edit → ROI Information. This opens the ROI Information dialog,
which displays area, perimeter, number of pixels, minimum and maximum pixel
values, mean, and standard deviation. Values for statistical information (minimum,
maximum, mean, and standard deviation) appear as “N/A” for 24-bit images.

Viewing a Histogram Plot for an ROI

To view a histogram for an ROI, use either the shortcut menu or the ROI Information
dialog.

To view an ROI’s histogram plot using the shortcut menu:

1. Position the cursor on the line defining the boundary of an ROI in the drawing
window and click the right mouse button. This selects the region and brings up
its shortcut menu.

2. Select the Plot Histogram menu option from the shortcut menu.

To view an ROI’s histogram plot using the ROI Information dialog:

1. Open the ROI Information dialog by clicking the Info button or selecting Edit
→ ROI Information.

2. Select a region from the list and click the Histogram button on the ROI
Information dialog.

Either of the previous methods opens a LIVE_PLOT dialog showing the ROI’s
histogram that can be used to interactively control the plot properties.

Note
XROI’s histogram plot feature now supports RGB images.
What’s New in IDL 5.5 XROI

312 Chapter 6: New IDL Routines
Growing an ROI

Once a region has been created, it may be used as a source ROI for region growing.
Region growing is a process of generating one or more new ROIs based upon the
image pixel values that fall within the source ROI and the values of the neighboring
pixels. New pixels are added to the new grown region if those image pixel values fall
within a specified threshold.

Note
This option is an interactive implementation of the REGION_GROW function.

To create a new, grown region, do the following:

1. Within the draw area, click the right mouse button on the ROI that is to be
grown. This will select the region and bring up its shortcut menu.

2. Select Grow Region → By threshold or select Grow Region → By std. dev.
multiple from the shortcut menu to control how the region is grown.

The By threshold option grows the region to include all neighboring pixels
that fall within a specified threshold range. By default, the range is defined by
the minimum and maximum pixel values occurring within the original region.
To specify a different threshold range, see Using the Region Grow Properties
Dialog in the following section.

The By std. dev. multiple option grows a region to include all neighboring
pixels that fall within the range of:

Mean +/- StdDevMultiplier * StdDev

where Mean is the mean value of the pixel values within the source ROI,
StdDevMultiplier is a multiplier that is set using the Region Grow
Properties dialog (described below), and StdDev is the sample standard
deviation of the pixel values within the original region.

Using the Region Grow Properties Dialog

The Region Grow Properties dialog allows you to view and edit the properties
associated with a region growing process. To bring up the Region Grow Properties
dialog, do one of the following:

• Click the right mouse button on an ROI in the drawing window and select
Grow Region → Properties... shortcut menu option.

• Select Edit → Region Grow Properties... from the XROI menu bar.
XROI What’s New in IDL 5.5

Chapter 6: New IDL Routines 313
This brings up the Region Grow Properties dialog, shown in the following figure.

The Region Grow Properties dialog offers the following options:

Figure 6-2: XROI’s Region Grow Properties Dialog

Option Description

Pixel search
method:

Describes which pixels are searched when growing the
original ROI. The option are:

• 4-neighbor — Searches only the four neighboring
pixels that share a common edge with the current pixel.
This is the default.

• 8-neighbor — Searches all eight neighboring pixels,
including those that are located diagonally relative to
the original pixel and share a common corner.

Table 6-6: Options of the Region Grow Properties Dialog
What’s New in IDL 5.5 XROI

314 Chapter 6: New IDL Routines
Threshold range: Represents the minimum and maximum image pixel values
that are to be included in the grown region when using the
Grow Region → By threshold option (described in
“Growing an ROI” on page 312). By default, the range of
pixel values used are those occurring in the ROI to be
grown.

To change the threshold values, uncheck Use source ROI
threshold and enter the minimum and maximum threshold
values in the Min: and Max: fields provided.

Standard deviation
multiplier:

Represents the factor by which the sample standard
deviation of the original ROI’s pixel values is multiplied.
This factor only applies when the Grow Region → By std.
dev. multiple option (described in “Growing an ROI” on
page 312) is used.

Change the multiplier value by typing the value into the
Standard deviation multiplier field provided.

For RGB image,
use:

Determines the basis of region growing for an RGB (rather
than indexed) image. The image data values used when
growing a RGB region can be one of the following:

• Luminosity — Uses the luminosity values associated
with an RGB image. This is the default method.
Luminosity is computed as:

Luminosity = (0.3 * Red) + (0.59 * Green) + (0.11 *
Blue)

• Red Channel, Green Channel or Blue Channel —
Uses the ROI’s red, green or blue channel as a basis for
region growing. Click the channel’s associated button to
specify the channel to be used.

Note - For indexed images, the image data itself is always
used for region growing.

Option Description

Table 6-6: Options of the Region Grow Properties Dialog (Continued)
XROI What’s New in IDL 5.5

Chapter 6: New IDL Routines 315
Deleting an ROI

An ROI can be deleted using either the shortcut menu or using the ROI Information
dialog.

To delete an ROI using the shortcut menu:

1. Click the right mouse button on the line defining the boundary of the ROI in
the drawing area that you wish to delete. This selects the region and bring up
the shortcut menu.

2. Select the Delete menu option from the shortcut menu.

To delete an ROI using the ROI Information dialog:

1. Click the Info button or select Edit → ROI Information. This opens the ROI
Information dialog.

2. In the ROI Information dialog, select the ROI you wish to delete from the list
of ROIs. You can also select an ROI by clicking the Select button on the XROI
toolbar, then clicking on an ROI on the image.

Acceptance criteria: Determines which contours of the grown region are
accepted as new regions, (which will also be displayed in
the draw area and in the ROI Information dialog list of
regions). The region growing process can result in a large
number of contours, some of which may be considered
insignificant. By default, no more than two regions (those
with the greatest geometrical area) are accepted. Modify the
acceptance criteria by altering the following values:

• Maximum number of regions: — Specifies the upper
limit of the number of regions to create when growing
an ROI.

• Minimum area per region: — Specifies that only
contours having a geometric area (computed in device
coordinates) of at least the value stated are accepted and
displayed.

• Accept all regions: — Select this option to accept all
generated contours, regardless of count or area.

Option Description

Table 6-6: Options of the Region Grow Properties Dialog (Continued)
What’s New in IDL 5.5 XROI

316 Chapter 6: New IDL Routines
3. Click the Delete ROI button.

Examples

Example 1

This example opens a single image in XROI:

image = READ_PNG(FILEPATH('mineral.png', $
SUBDIR=['examples', 'data']))

XROI, image

Example 2

This example reads 3 images from the file mr_abdomen.dcm, and calls XROI for
each image. A single list of regions is maintained, saving the user from having to
redefine regions on each image:

;Read 3 images from mr_abdomen.dcm and open each one in XROI:
FOR i=0,2 DO BEGIN

image = READ_DICOM(FILEPATH('mr_abdomen.dcm',$
SUBDIR=['examples', 'data']), IMAGE_INDEX=i)

XROI, image, r, g, b, REGIONS_IN = regions, $
REGIONS_OUT = regions, $
ROI_SELECT_COLOR = roi_select_color, $
ROI_COLOR = roi_color, REJECTED = rejected, /BLOCK

OBJ_DESTROY, rejected
ENDFOR

OBJ_DESTROY, regions

Perform the following steps:

1. Draw an ROI on the first image, then close that XROI window. Note that the
next image contains the ROI defined in the first image. This is accomplished
by setting REGIONS_IN and REGIONS_OUT to the same named variable in
the FOR loop of the above code.

2. Draw another ROI on the second image.

3. Click the Select button and select the first ROI. Then click the Info button to
open the ROI Information window, and click the Delete ROI button.

4. Close the second XROI window. Note that the third image contains the ROI
defined in the second image, but not the ROI deleted on the second image.
This example sets the REJECTED keyword to a named variable, and calls
OBJ_DESTROY on that variable. Use of the REJECTED keyword is not
XROI What’s New in IDL 5.5

Chapter 6: New IDL Routines 317
necessary to prevent deleted ROIs from appearing on subsequent images, but
allows you perform cleanup on objects that are no longer required.

Example 3

XROI’s File → Save ROIs option allows you to save selected regions of interest.
This example shows how to restore such a save file. Suppose you have a file named
mineralRoi.sav that contains regions of interest selected in the mineral.png
image file. You would need to complete the following steps to restore the file:

1. First, restore the file, mineralRoi.sav. Provide a value for the RESTORE
procedure’s RESTORED_OBJECTS keyword. Using the scenario stated
above, you could enter the following:

RESTORE, 'mineralRoi.sav', RESTORED_OBJECTS = myRoi

2. Pass the restored object data containing your regions of interest into XROI by
specifying myRoi as the value for REGIONS_IN as follows:

XROI, READ_PNG(FILEPATH('mineral.png', SUBDIRECTORY = $
['examples', 'data'])), REGIONS_IN = myRoi

This opens the previously selected regions of interest in the XROI utility.
What’s New in IDL 5.5 XROI

318 Chapter 6: New IDL Routines
XROI What’s New in IDL 5.5

Chapter 7:

New Examples
This chapter includes new documentation of some IDL examples introduced in IDL 5.5.
Overview of New Examples 320
Mapping an Image Onto a Surface 322

Centering an Image Object 325
Alpha Blending: Creating a Transparent Image
Object . 328

Working with Mesh Objects and Routines 332
Copying and Printing Objects 351

Capturing IDL Direct Graphics Displays . 359
Creating and Restoring .sav Files 363

Handling Table Widgets in GUIs 368
Finding Straight Lines in Images 374

Color Density Contrasting in an Image . . 376
Removing Noise from an Image with FFT 379

Using Double and Triple Integration 381
Obtaining Irregular Grid Intervals 385

Calculating Incomplete Beta and Gamma
Functions . 387
Determining Bessel Function Accuracy . . 390
What’s New in IDL 5.5 319

320 Chapter 7: New Examples
Overview of New Examples

This chapter contains new examples highlighting a wide range of functionality in
IDL. These examples provide code that can be easily followed and adapted when
developing your own routines using the covered functionality.

Tip
You can copy and paste the text of each example in this chapter into the IDL Editor
window and save it has a .pro file with the same name as the example routine. You
can then compile and run the program to reproduce each example.

Note
If you are running IDL on UNIX, you should use only lowercase characters when
naming your .pro files. For example, if you have a routine defined as PRO
MyExample, (on UNIX) you should save this routine in a file named
myexample.pro.

The examples are arranged into three broad categories, covering the topics described
in the following table.

Category Example Topics

Object Graphics “Mapping an Image Onto a Surface” on page 322 describes
mapping an image onto elevation data.

“Centering an Image Object” on page 325 describes the
centering of image objects using a viewplane rectangle and
coordinate conversions.

“Alpha Blending: Creating a Transparent Image Object” on
page 328 describes how to create and apply an alpha channel.

“Working with Mesh Objects and Routines” on page 332
includes clipping, decimating, merging, smoothing, and
advanced, combination mesh examples.

“Copying and Printing Objects” on page 351 includes copying
and printing plot and image object displays.

Table 7-1: Topics of New Examples
Overview of New Examples What’s New in IDL 5.5

Chapter 7: New Examples 321
Language and
Visualization

“Capturing IDL Direct Graphics Displays” on page 359
includes examples of capturing Direct Graphics displays on
TrueColor and PseudoColor devices.

“Creating and Restoring .sav Files” on page 363 describes
how to create and restore binary .sav files containing
variables and routines.

“Handling Table Widgets in GUIs” on page 368 describes how
to insert a table widget into a GUI.

Analysis “Finding Straight Lines in Images” on page 374 describes
using the HOUGH transform to detect straight lines.

“Color Density Contrasting in an Image” on page 376 uses the
RADON transform to find outlines within an image.

“Removing Noise from an Image with FFT” on page 379
describes using FFT to detect and remove image noise.

“Using Double and Triple Integration” on page 381 describes
integrating over surfaces and volumes.

“Obtaining Irregular Grid Intervals” on page 385 shows how
to obtain irregular intervals from the TRIGRID routine using
the XOUT and YOUT keywords.

“Calculating Incomplete Beta and Gamma Functions” on
page 387 describes using tolerances and iteration controls
when computing the incomplete beta and gamma functions.

“Determining Bessel Function Accuracy” on page 390
includes analyzing Bessel and Modified Bessel functions of
the first and second kind.

Category Example Topics

Table 7-1: Topics of New Examples (Continued)
What’s New in IDL 5.5 Overview of New Examples

322 Chapter 7: New Examples
Mapping an Image Onto a Surface

The following example maps a satellite image from the Los Angeles, California
vicinity onto a DEM (Digital Elevation Model) containing the area’s topographical
features. The realism resulting from mapping the image onto the corresponding
elevation data (also known as texture mapping) provides a more informative view of
the area’s topography. This Object Graphics example creates an image object,
containing the satellite image, and a surface object, containing the DEM data. The
image is then mapped to the surface using the IDLgrSurface::SetProperty
TEXTURE_MAP keyword.

Note
To map high resolution images onto geometric surfaces, set the
TEXTURE_HIGHRES keyword to IDLgrSurface::Init. See “High-Resolution
Textures Supported by IDLgrSurface” in Chapter 1 for more information.

PRO TextureMap

; State the path to image file.
image_file = FILEPATH('elev_t.jpg', $

SUBDIRECTORY=['examples', 'data'])

; Import image file.
READ_JPEG, image_file, image

; State the path to DEM data file.
data_file = FILEPATH('elevbin.dat', $

SUBDIRECTORY=['examples', 'data'])

; Import elevation data.
dem_data = BYTARR(64, 64)
OPENR, unit, data_file, /GET_LUN
READU, unit, dem_data
FREE_LUN, unit
; Increase size of data for visibility.
dem_data = CONGRID(dem_data, 128,128, /INTERP)

; Initialize the model, surface and image objects.
oModel = OBJ_NEW('IDLgrModel')
oSurface = OBJ_NEW('IDLgrSurface', dem_data, STYLE = 2)
oImage = OBJ_NEW('IDLgrImage', image, $

INTERLEAVE = 0, /INTERPOLATE)

; Calculate normalized conversion factors and
; shift -.5 in every direction to center object
Mapping an Image Onto a Surface What’s New in IDL 5.5

Chapter 7: New Examples 323
; in the window.
; Keep in mind that your view default coordinate
; system is [-1,-1], [1, 1]
oSurface -> GETPROPERTY, XRANGE = xr, $

YRANGE = yr, ZRANGE = zr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
zs = NORM_COORD(zr)
zs[0] = zs[0] - 0.5
oSurface -> SETPROPERTY, XCOORD_CONV = xs, $

YCOORD_CONV = ys, ZCOORD = zs

; Apply the image to surface (texture mapping).
oSurface->SetProperty, TEXTURE_MAP = oImage, $

COLOR = [255, 255, 255]

; Add the surface to the model.
oModel -> Add, oSurface

; Rotate the model for better display of surface
; in the object window.
oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], 30
oModel -> ROTATE, [1, 0, 0], 30

; Display results in XOBJVIEW utility to provide
; rotation, zoom, and translation control.
XOBJVIEW, oModel, /BLOCK, SCALE = 1

; Cleanup object references.
OBJ_DESTROY, [oImage, oModel]

END
What’s New in IDL 5.5 Mapping an Image Onto a Surface

324 Chapter 7: New Examples
The result for this example is shown in the following figure.

Figure 7-1: Result of Mapping an Image onto a Geometric Surface
Mapping an Image Onto a Surface What’s New in IDL 5.5

Chapter 7: New Examples 325
Centering an Image Object

In many cases, Object Graphics allow you to choose from different methods to obtain
the same solution. An example of this type of variety is shown when you try to center
an image object in a display window. While several methods for centering an image
object are available, this example shows the two most common methods for centering
an image object within a display window.

The first method establishes a viewplane rectangle within a view object. The image
object is added to a model object. The model object is then translated to the center of
the window object.

The second method does not establish a viewplane rectangle. Instead coordinate
conversions are calculated and applied to the image object to center it within the
model. This method works within the normalized coordinate system of the model.

This example uses the image from the worldelv.dat file found in the
examples/data directory.

PRO CenteringAnImage

; Determine path to file.
worldelvFile = FILEPATH('worldelv.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize image parameters.
worldelvSize = [360, 360]
worldelvImage = BYTARR(worldelvSize[0], worldelvSize[1])

; Open file, read in image, and close file.
OPENR, unit, worldelvFile, /GET_LUN
READU, unit, worldelvImage
FREE_LUN, unit

; Initialize window parameters.
windowMargin = [70, 50]
windowSize = worldelvSize + (2*windowMargin)

; First Method: Defining the Viewplane and
; Translating the Model.
;---

; Initialize objects required for an Object Graphics
; display.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'World Elevation: First Method')
What’s New in IDL 5.5 Centering an Image Object

326 Chapter 7: New Examples
oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., windowSize])

oModel = OBJ_NEW('IDLgrModel')

; Initialize palette with STD GAMMA-II color table and
; use it to initialize the image object.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 5
oImage = OBJ_NEW('IDLgrImage', worldelvImage, $

PALETTE = oPalette)

; Add image to model, which is added to view. Model
; is translated to center the image within the window.
; Then view is displayed in window.
oModel -> Add, oImage
oView -> Add, oModel
oModel -> Translate, windowMargin[0], windowMargin[1], 0.
oWindow -> Draw, oView

; Clean-up object references.
OBJ_DESTROY, [oView, oPalette]

; Second Method: Using Coordinate Conversions.
;---

; Initialize objects required for an Object Graphics
; display.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'World Elevation: Second Method')

oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')

; Initialize palette with STD GAMMA-II color table and
; use it to initialize the image object.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 5
oImage = OBJ_NEW('IDLgrImage', worldelvImage, $

PALETTE = oPalette)

; Obtain initial coordinate conversions of image object.
oImage -> GetProperty, XCOORD_CONV = xConv, $

YCOORD_CONV = yConv, XRANGE = xRange, YRANGE = yRange

; Output initial coordinate conversions.
PRINT, 'Initial xConv: ', xConv
PRINT, 'Initial yConv: ', yConv

; Applying margins to coordinate conversions.
Centering an Image Object What’s New in IDL 5.5

Chapter 7: New Examples 327
xTranslation = (2.*FLOAT(windowMargin[0])/windowSize[0]) - 1.
xScale = (-2.*xTranslation)/worldelvSize[0]
xConv = [xTranslation, xScale]
yTranslation = (2.*FLOAT(windowMargin[1])/windowSize[1]) - 1.
yScale = (-2.*yTranslation)/worldelvSize[1]
yConv = [yTranslation, yScale]

; Output resulting coordinate conversions.
PRINT, 'Resulting xConv: ', xConv
PRINT, 'Resulting yConv: ', yConv

; Apply resulting conversions to the image object.
oImage -> SetProperty, XCOORD_CONV = xConv, $

YCOORD_CONV = yConv

; Add image to model, which is added to view. Display
; the view in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END
What’s New in IDL 5.5 Centering an Image Object

328 Chapter 7: New Examples
Alpha Blending: Creating a Transparent
Image Object

In Object Graphics, image transparency is created by adding an alpha channel to an
image array. The alpha channel is used to define the level of transparency in an image
object. The following Object Graphics example uses the IDLgrImage::Init method to
create an image object and employs the BLEND_FUNCTION keyword to specify
how the transparency of the alpha channel is applied. Other methods of applying a
transparent image object include using the TEXTURE_MAP keyword in conjunction
with either the IDLgrPolygon::Init or the IDLgrSurface::Init methods.

The following example creates two image objects of MRI slices of a human head.
After adding an alpha channel to the second image object, it is layered over the first
image object as a transparency.

PRO AlphaBlend

; Determine path to file.
headFile = FILEPATH('head.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize volume array and size parameter.
headSize = [80, 100, 57]
head = BYTARR(headSize[0], headSize[1], headSize[2])
imageSize = [240, 300]

; Open file, read in volume, and close file.
OPENR, unit, headFile, /GET_LUN
READU, unit, head
FREE_LUN, unit

; Initialize window and view objects to vertically
; display two images.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [imageSize[0], 2*imageSize[1]], $
TITLE='MRI Slices')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize[0], 2*imageSize[1]])

; Initialize a model object for each image.
oModel = [OBJ_NEW('IDLgrModel'), OBJ_NEW('IDLgrModel')]

; Extract the first slice of data.
layer1 = CONGRID(head[*,*,30], imageSize[0],imageSize[1],$

/INTERP)
Alpha Blending: Creating a Transparent Image Object What’s New in IDL 5.5

Chapter 7: New Examples 329
; Initialize the first image layer.
oLayer1 = OBJ_NEW('IDLgrImage', layer1)

; Extract the second slice of data.
layer2 = CONGRID(head[*,*,43], imageSize[0],imageSize[1],$

/INTERP)

; Initialize second image layer with a palette.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 12
oLayer2 = OBJ_NEW('IDLgrImage', layer2, PALETTE = oPalette)

; Add the layers to the model.
oModel[0] -> Add, oLayer1
oModel[1] -> Add, oLayer2

; Translate the first layer to the top of the
; display. Initially, the lower left corner of both
; models are at the lower left corner of the display.
; The model of the first layer must be moved above the
; second layer model to allow both to be displayed.
oModel[0] -> Translate, 0., imageSize[1], 0.

; Add the model to the view, and then display the view
; in the window.
oView -> Add, oModel
oWindow -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView]

; Get the red, green and blue values of the palette.
oPalette -> GetProperty, RED_VALUES = red, $

GREEN_VALUES = green, BLUE_VALUES = blue

; Create a four channel array for alpha blending.
alpha = BYTARR(4, imageSize[0], imageSize[1])

; Add the palette values to the first three channels.
alpha[0,*,*]= red[layer2]
alpha[1,*,*]= green[layer2]
alpha[2,*,*]= blue[layer2]

; Create a mask to remove lower pixels values from array.
mask = layer2 GT 25

; Apply the mask to the alpha (fourth) channel of the
; array. Set transparency to 80. Range is 0 (completely
What’s New in IDL 5.5 Alpha Blending: Creating a Transparent Image Object

330 Chapter 7: New Examples
; transparent)to 255 (completely opaque).
alpha[3,*,*] = mask * 80

; Initialize the alpha image object, setting blend function.
oAlpha = OBJ_NEW('IDLgrImage', alpha, $

DIMENSIONS = imageSize, BLEND_FUNCTION = [3,4])

; Initialize the window, model and view.
oWindow =OBJ_NEW('IDLgrWindow', DIMENSIONS = imageSize, $

LOCATION = [300,0], RETAIN = 2,$
TITLE ='Alpha Blending Example')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0,0,imageSize[0], imageSize[1]])

oModel = OBJ_NEW('IDLgrModel')

; Initialize a new image object for layer1.
oBase = OBJ_NEW('IDLgrImage', layer1)
; Add the transparent image objects AFTER adding other
; image objects to the model.
oModel -> Add, oBase
oModel -> Add, oAlpha
oView -> Add, oModel
; Display the transparent image object.
oWindow -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END
Alpha Blending: Creating a Transparent Image Object What’s New in IDL 5.5

Chapter 7: New Examples 331
The results for this example are shown in the following figure.

Figure 7-2: Original Image Objects (left) and
Resulting Alpha Blended Image (right)
What’s New in IDL 5.5 Alpha Blending: Creating a Transparent Image Object

332 Chapter 7: New Examples
Working with Mesh Objects and Routines

In IDL, meshes are made up of a list of vertex locations and a description of vertex
connectivity. The vertex locations are usually represented by an array containing two
or three columns (one column for the x values, one for the y values, and optionally
one for the z values). The array of vertex locations is known as the vertices. The
vertex relationships are represented in the connectivity list, which is a vector (a one-
dimensional array). The connectivity list contains the information for each individual
shape within the mesh. This list contains the number of vertices of each shape in the
mesh followed by the index of the vertices within that shape. For example, if vertices
number 0, 1, 2, and 3 make up the first shape, which is a rectangle, and vertices
number 1, 2, and 4 make up the second shape, which is a triangle, then the
connectivity is [4, 0, 1, 2, 3, 3, 1, 4, 2].

IDL contains many mesh-related routines. This section provides examples for
clipping, decimating, merging, and smoothing meshes. This section also includes an
advanced example using some of these routines together to produce an overall
display. These examples use IDL polygon objects to display the meshes. The polygon
object is designed for meshes. It contains a vertices input argument and a
POLYGONS keyword for connectivity lists.

This section includes examples of the following:

• “Clipping a Mesh” on page 333

• “Decimating a Mesh” on page 336

• “Merging Meshes” on page 339

• “Smoothing a Mesh” on page 342

• “Advanced Meshing: Combining Meshing Routines” on page 345
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 333
Clipping a Mesh

This example clips a mesh of an octahedron (an eight-sided, three-dimensional shape
similar to a cut diamond). A mesh is clipped when an imaginary plane intersects the
mesh. The clipped mesh is either of the remaining sides of the original mesh after the
imaginary (clipping) plane intersects.

The original octahedron mesh in this example contains one rectangle and eight
triangles. The connectivity list is formed with the rectangle listed first followed by
the triangles. The mesh is placed in a polygon object, which is added to a model. The
model is displayed in the XOBJVIEW utility. The XOBJVEW utility allows you to
click-and-drag the polygon object to rotate and translate it. See XOBJVIEW in the
IDL Reference Guide for more information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. This display shows the mesh clipped with an oblique plane. The final
XOBJVIEW display shows the results of using the TRIANGULATE routine to cover
the clipped area. See TRIANGULATE in the IDL Reference Guide for more
information in this routine.

PRO ClippingAMesh

; Create a mesh of an octahedron.
vertices = [[0, -1, 0], [1, 0, 0], [0, 1, 0], $

[-1, 0, 0], [0, 0, 1], [0, 0, -1]]
connectivity = [4, 0, 1, 2, 3, 3, 0, 1, 4, 3, 1, 2, 4, $

3, 2, 3, 4, 3, 3, 0, 4, 3, 1, 0, 5, 3, 2, 1, 5, $
3, 3, 2, 5, 3, 0, 3, 5]

; Initialize model for display.
oModel = OBJ_NEW('IDLgrModel')

; Initialize polygon and polyline outline to contain
; the mesh of the octahedron.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $

POLYGONS = connectivity, SHADING = 1, $
COLOR = [0, 255, 0])

oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
POLYLINES = connectivity, COLOR = [0, 0, 0])

; Add the polygon and the polyline to the model.
oModel -> Add, oPolygon
oModel -> Add, oPolyline

; Rotate model for better initial perspective.
oModel -> Rotate, [-1, 0, 1], 22.5
What’s New in IDL 5.5 Working with Mesh Objects and Routines

334 Chapter 7: New Examples
; Display model.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $

TITLE = 'Original Octahedron Mesh'

; Clip mesh.
clip = MESH_CLIP([1., 1., 1., 0.], vertices, connectivity, $

clippedVertices, clippedConnectivity, $
CUT_VERTS = cutVerticesIndex)

; Update polygon with the resulting clipped mesh.
oPolygon -> SetProperty, DATA = clippedVertices, $

POLYGONS = clippedConnectivity

; Display the updated model.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $

TITLE = 'Clipped Octahedron Mesh'

; Determine the vertices of the clipped plane.
cutVertices = clippedVertices[*, cutVerticesIndex]

; Derive the x and y components of the clipped plane's
; vertices.
x = cutVertices[0, *]
y = cutVertices[1, *]

; Triangulate the connectivity of the clipped plane.
TRIANGULATE, x, y, triangles

; Derive the connectivity of the clipped plane from the
; results of the triangulation.
arraySize = SIZE(triangles, /DIMENSIONS)
array = FLTARR(4, arraySize[1])
array[0, *] = 3
array[1, 0] = triangles
cutConnectivity = REFORM(array, N_ELEMENTS(array))

; Initialize the clipped plane's polygon and polyline.
oCutPolygon = OBJ_NEW('IDLgrPolygon', cutVertices, $

POLYGONS = cutConnectivity, SHADING = 1, $
COLOR = [0, 0, 255])

oCutPolyline = OBJ_NEW('IDLgrPolyline', cutVertices, $
POLYLINES = cutConnectivity, COLOR = [255, 0, 0], $
THICK = 3.)

; Add polyline and polygon to model.
oModel -> Add, oCutPolyline
oModel -> Add, oCutPolygon

; Display updated model.
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 335
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $
TITLE = 'Clipped Octahedron Mesh with Clipping Plane'

; Clean-up object references.
OBJ_DESTROY, [oModel]

END

The results for this example are shown in the following figure.

Figure 7-3: The Original Octahedron (left) and the Two Clipped Results (right)
What’s New in IDL 5.5 Working with Mesh Objects and Routines

336 Chapter 7: New Examples
Decimating a Mesh

This example decimates a DEM (digital elevation model) mesh. Decimation reduces
either the number of vertices or the number of connections within a mesh while
trying to maintain the overall shape of the mesh. Very large meshes usually contain
redundant or useless information, which may slow down any interactive displays of
the mesh. Decimation helps to reduce the size of these large meshes.

The DEM in this example comes from the elevbin.dat file found in the
examples/data directory. The DEM is converted into a mesh with the MESH_OBJ
procedure. The results of this routine are placed in a polygon object, which is added
to a model. The models are displayed in the XOBJVIEW utility. The XOBJVEW
utility allows you to click-and-drag the polygon object to rotate and translate it. See
XOBJVIEW in the IDL Reference Guide for more information on this utility.

The first display contains a wire outline of the DEM as a mesh. When you quit out of
the first XOBJVIEW display, the second XOBJVIEW display will appear showing a
filled mesh. The colors correspond to the change in elevation. The third display is the
result of decimating the mesh down to 20 percent of the original number of vertices.
The final display is the resulting mesh filled with the elevation colors.

PRO DecimatingAMesh

; Determine path to data file.
elevbinFile = FILEPATH('elevbin.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize data parameters.
elevbinSize = [64, 64]
elevbinData = BYTARR(elevbinSize[0], elevbinSize[1])

; Open file, read in data, and close file.
OPENR, unit, elevbinFile, /GET_LUN
READU, unit, elevbinData
FREE_LUN, unit

; Convert data into a mesh, which is defined by
; vertice locations and their connectivity.
MESH_OBJ, 1, vertices, connectivity, elevbinData

; Initialize a model for display.
oModel = OBJ_NEW('IDLgrModel')

; Form a polygon from the mesh.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $

POLYGONS = connectivity, SHADING = 1.5, $
COLOR = [0, 255, 0], STYLE = 1)
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 337
; Add polygon to model.
oModel -> Add, oPolygon

; Rotate model for better initial perspective.
oModel -> Scale, 1, 1, 0.25
oModel -> Rotate, [-1, 0, 1], 45.

; Display model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $

TITLE = 'Original Mesh from Elevation Data'

; Derive a color table for the filled polygon.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 29

; Fill in the polygon mesh with the colors of the table
; (the colors correspond to the z-values of the polygon).
oPolygon -> SetProperty, STYLE = 2, $

VERT_COLORS = BYTSCL(vertices[2, *]), $
PALETTE = oPalette

; Display model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $

TITLE = 'Filled Original Mesh'

; Decimate the mesh down to 20 percent of the original
; number of vertices.
numberVertices = MESH_DECIMATE(vertices, connectivity, $

decimatedConnectivity, VERTICES = decimatedVertices, $
PERCENT_VERTICES = 20)

; Update the polygon with the resulting decimated mesh.
oPolygon -> SetProperty, DATA = decimatedVertices, $

POLYGONS = decimatedConnectivity, STYLE = 1, $
VERT_COLORS = 0, COLOR = [0, 255, 0]

; Display updated model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $

TITLE = 'Decimation Results (by 80%)'

; Fill in the updated polygon mesh with the colors of
; the table (the colors correspond to the z-values of
; the updated polygon).
oPolygon -> SetProperty, STYLE = 2, $

VERT_COLORS = BYTSCL(decimatedVertices[2, *]), $
PALETTE = oPalette

; Display model in the XOBJVIEW utility.
What’s New in IDL 5.5 Working with Mesh Objects and Routines

338 Chapter 7: New Examples
XOBJVIEW, oModel, /BLOCK, SCALE = 1., $
TITLE = 'Filled Decimation Results'

; Cleanup all the objects by destroying the model.
OBJ_DESTROY, [oModel, oPalette]

END

The results for this example are shown in the following figure.

Figure 7-4: Before Decimating (top row) and After Decimating (bottom row)
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 339
Merging Meshes

This example merges two simple meshes: a single square and a single right triangle.
The right side of the square is in the same location as the left side of the triangle. Each
mesh is originally its own polygon object. These objects are then added to a model
object. The model is displayed in the XOBJVIEW utility. The XOBJVEW utility
allows you to click-and-drag the polygon object to rotate and translate it. See
XOBJVIEW in the IDL Reference Guide for more information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. The meshes are merged into a single polygon object. After you quit out
of the second display, the final display shows the results of decimating the merged
mesh to obtain the least number connections for these vertices. Decimation can often
be used to refine the results of merging.

PRO MergingMeshes

; Create a mesh of a single square (4 vertices
; connected counter-clockwise from the lower left
; corner of the mesh.
vertices = [[-2., -1., 0.], [0., -1., 0.], $

[0., 1., 0.], [-2., 1., 0.]]
connectivity = [4, 0, 1, 2, 3]

; Create a separate mesh of a single triangle (3
; vertices connected counter-clockwise from the lower
; left corner of the mesh.
triangleVertices = [[0., -1., 0.], [2., -1., 0.], $

[0., 1., 0.]]
triangleConnectivity = [3, 0, 1, 2]

; Initialize model for display.
oModel = OBJ_NEW('IDLgrModel')

; Initialize polygon for the square mesh.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $

POLYGONS = connectivity, COLOR = [0, 128, 0], $
STYLE = 1)

; Initialize polygon for the triangle mesh.
oTrianglePolygon = OBJ_NEW('IDLgrPolygon', $

triangleVertices, POLYGONS = triangleConnectivity, $
COLOR = [0, 0, 255], STYLE = 1)

; Add both polygons to the model.
oModel -> Add, oPolygon
oModel -> Add, oTrianglePolygon
What’s New in IDL 5.5 Working with Mesh Objects and Routines

340 Chapter 7: New Examples
; Display the model in the XOBJVIEW utility.
XOBJVIEW, oModel, /BLOCK, $

TITLE = 'Two Separate Meshes'

; Merge the square and triangle into a single mesh.
numberTriangles = MESH_MERGE(vertices, $

connectivity, triangleVertices, $
triangleConnectivity, /COMBINE_VERTICES)

; Output number of resulting vertices and triangles.
numberVertices = SIZE(vertices, /DIMENSIONS)
PRINT, 'numberVertices = ', numberVertices[1]
PRINT, 'numberTriangles = ', numberTriangles

; Cleanup triangle polygon object, which is no longer
; needed.
OBJ_DESTROY, [oTrianglePolygon]

; Update remaining polygon object with the results from
; merging the two meshes together.
oPolygon -> SetProperty, DATA = vertices, $

POLYGONS = connectivity, COLOR = [0, 128, 128]

; Display results.
XOBJVIEW, oModel, /BLOCK, $

TITLE = 'Result of Merging the Meshes into One'

; Decimate polygon to 75 percent of the original
; number of vertices.
numberTriangles = MESH_DECIMATE(vertices, connectivity, $

decimatedConnectivity, PERCENT_POLYGONS = 75)

; Output number of resulting triangles.
PRINT, 'After Decimation: numberTriangles = ', numberTriangles

; Update polygon with results from decimating.
oPolygon -> SetProperty, DATA = vertices, $

POLYGONS = decimatedConnectivity, COLOR = [0, 0, 0]

; Display decimation results.
XOBJVIEW, oModel, /BLOCK, $

TITLE = 'Decimation of Mesh'

; Cleanup object references.
OBJ_DESTROY, [oModel]

END
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 341
The results for this example are shown in the following figure.

Figure 7-5: Original (left), Merged (center), and Decimated Meshes (right)
What’s New in IDL 5.5 Working with Mesh Objects and Routines

342 Chapter 7: New Examples
Smoothing a Mesh

This example smooths a rectangular mesh containing a spike. First, a rectangle mesh
is created. This mesh is made up 10 columns and 5 rows of vertices. The vertices are
connected with right triangles. The mesh is placed in a polygon object, which is
added to a model object. The model is displayed in the XOBJVIEW utility. The
XOBJVEW utility allows you to click-and-drag the polygon object to rotate and
translate it. See XOBJVIEW in the IDL Reference Guide for more information on this
utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. The center vertex of the top row is displaced in the y-direction. This
displacement causes the center of the top to spike out away from the mesh. After you
quit out of the second display, the third display shows the result of smoothing the
entire mesh. The final display shows the results of smoothing the spike with all the
other vertices fixed.

PRO SmoothingMeshes

; Initialize mesh size parameters.
nX = 10
nY = 5

; Initialize the x coordinates of the mesh's vertices.
xVertices = FINDGEN(nX) # REPLICATE(1., nY)
PRINT, 'xVertices: '
PRINT, xVertices, FORMAT = '(10F6.1)'

; Initialize the y coordinates of the mesh's vertices.
yVertices = REPLICATE(1., nX) # FINDGEN(nY)
PRINT, 'yVertices: '
PRINT, yVertices, FORMAT = '(10F6.1)'

; Derive the overall vertices of the mesh.
vertices = FLTARR(3, (nX*nY))
vertices[0, *] = xVertices
vertices[1, *] = yVertices
PRINT, 'vertices: '
PRINT, vertices, FORMAT = '(3F6.1)'

; Triangulate the mesh to establish connectivity.
TRIANGULATE, xVertices, yVertices, triangles
trianglesSize = SIZE(triangles, /DIMENSIONS)
polygons = LONARR(4, trianglesSize[1])
polygons[0, *] = 3
polygons[1, 0] = triangles
PRINT, 'polygons: '
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 343
PRINT, polygons, FORMAT = '(4I6)'

; Derive connectivity from the resulting triangulation.
connectivity = REFORM(polygons, N_ELEMENTS(polygons))

; Initialize a model for the display.
oModel = OBJ_NEW('IDLgrModel')

; Initialize a polygon object to contain the mesh.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $

POLYGONS = connectivity, COLOR = [0, 128, 0], $
STYLE = 1)

; Add the polygon to the model.
oModel -> Add, oPolygon

; Display the model.
XOBJVIEW, oModel, /BLOCK, $

TITLE = 'Original Mesh'

; Introduce an irregular vertex by drastically changing
; a single y coordinate.
vertices[1, 45] = 10.

; Update polygon with new vertices.
oPolygon -> SetProperty, DATA = vertices

; Display change.
XOBJVIEW, oModel, /BLOCK, $

TITLE = 'Mesh with New Irregular Vertex'

; Smooth entire mesh to reduce the effect of the
; irregular vertex.
smoothedVertices = MESH_SMOOTH(vertices, connectivity)

; Update polygon and display results.
oPolygon -> SetProperty, DATA = smoothedVertices
XOBJVIEW, oModel, /BLOCK, $

TITLE = 'Smoothing with No Fixed Vertices'

; Determine which vertices should be fixed. Basically,
; all of the vertices should be fixed except for the
; irregular vertex.
fixed = LINDGEN((nX*nY) - 1)
fixed[45] = fixed[45:*] + 1

; Smooth mesh with resulting fixed vertices.
smoothedVertices = MESH_SMOOTH(vertices, connectivity, $

FIXED_VERTICES = fixed)
What’s New in IDL 5.5 Working with Mesh Objects and Routines

344 Chapter 7: New Examples
; Update polygon and display results.
oPolygon -> SetProperty, DATA = smoothedVertices
XOBJVIEW, oModel, /BLOCK, $

TITLE = 'Smoothing with Almost All Vertices Fixed'

; Cleanup object references.
OBJ_DESTROY, [oModel]

END

The results for this example are shown in the following figure.

Figure 7-6: The Spiked Mesh (left) and the Two Smoothed Meshes (right)
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 345
Advanced Meshing: Combining Meshing Routines

This example uses world elevation image data (found in the worldelv.dat file in
the examples/data directory) to create a spherical mesh of the earth. The
MESH_OBJ routine is used to convert the world elevation image to a spherical mesh.
The elevation is exaggerated so it can be seen on the mesh. This mesh is placed in a
polygon object, which is added to a model object. The model is displayed in the
XOBJVIEW utility. The XOBJVEW utility allows you to click and drag the polygon
object to rotate and translate it. See XOBJVIEW in the IDL Reference Guide for more
information on this utility.

When you quit out of the first XOBJVIEW display, the second XOBJVIEW display
will appear. This display contains the world polygon clipped at the equator. The data
from the clipping process is used to define a plane polygon object. Earth mantle
convection data (found in the convec.dat file in the examples/data directory) is
placed on the planar polygon after making the background transparent. The
convection data was measured along 0 degrees longitude so it is placed vertically at
that longitude. And finally, in the third XOBJVIEW display, the lower hemisphere is
decimated to allow quicker rotations within the XOBJVIEW utility.

PRO WorldelvMesh

; Determine path to image file.
worldelvFile = FILEPATH('worldelv.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize image parameters.
worldelvSize = [360, 360]
worldelvImage = BYTARR(worldelvSize[0], worldelvSize[1])

; Open file, read in image, and close file.
OPENR, unit, worldelvFile, /GET_LUN
READU, unit, worldelvImage
FREE_LUN, unit

; Resize image to obtain data for a 1 degree interval in
; both directions.
worldelvImage = CONGRID(worldelvImage, 360, 180, /INTERP)

; Initialize display objects.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = [worldelvSize[0], worldelvSize[1]/2], $
TITLE = 'Original Elevation Image')

oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = [0., 0., $
worldelvSize[0], worldelvSize[1]/2])

oModel = OBJ_NEW('IDLgrModel')
What’s New in IDL 5.5 Working with Mesh Objects and Routines

346 Chapter 7: New Examples
; Initialize and set palette to the STD GAMMA-II color
; table.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 5

; Initialize image object.
oImage = OBJ_NEW('IDLgrImage', worldelvImage, $

PALETTE = oPalette)

; Add the image to the model, which is added to the
; view, and then the view is displayed in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Clean-up unused object references.
OBJ_DESTROY, [oView]

; Scale image values to the earth radius. Multiple
; scaling by 50 to exaggerate elevation.
worldelvImage = 50.*1.77*(worldelvImage/255.)

; Add the earth's radius to the image. The image only
; contains elevation information from the deepest parts
; of the oceans. The earth's radius is added to obtain
; a sphere with small changes in elevation on its
; surface.
radii = worldelvImage + REPLICATE(1275.6, 360, 180)

; Derive a mesh from the exaggerated image data and the
; radius of the earth.
MESH_OBJ, 4, vertices, connectivity, radii, /CLOSED

; Initialize a model to display.
oModel = OBJ_NEW('IDLgrModel')

; Determine the radius of each vertex to provide color
; at each vertex.
sphericalCoordinates = CV_COORD(FROM_RECT = vertices, $

/TO_SPHERE)
elevation = REFORM(sphericalCoordinates[2, *], $

N_ELEMENTS(sphericalCoordinates[2, *]))

; Initialize polygon to contain mesh.
oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $

POLYGONS = connectivity, SHADING = 1, $
VERT_COLORS = BYTSCL(elevation), $
PALETTE = oPalette)
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 347
; Add polygon to model.
oModel -> Add, oPolygon

; Rotate model to place view at 0 degrees latitude.
oModel -> Rotate, [1., 0., 0.], -90.

; Display model.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $

TITLE = 'Exaggerated Earth Elevation'

; Clip earth polgyon along the equator.
planeCoefficients = [0., 0., 1., 0.]
numberVertices = MESH_CLIP(planeCoefficients, $

vertices, connectivity, $
clippedVertices, clippedConnectivity, $
CUT_VERTS = cutVerticesIndex)

; Determine the radius of each vertex to provide color
; at each vertex.
sphericalCoordinates = CV_COORD($

FROM_RECT = clippedVertices, /TO_SPHERE)
elevation = REFORM(sphericalCoordinates[2, *], $

N_ELEMENTS(sphericalCoordinates[2, *]))

; Update polygon with results from clipping.
oPolygon -> SetProperty, DATA = clippedVertices, $

POLYGONS = clippedConnectivity, $
VERT_COLORS = BYTSCL(elevation)

; Display updated model.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $

TITLE = 'Earth Clipped at the Equator'

; Determine clipped plane's vertices.
cutVertices = clippedVertices[*, cutVerticesIndex]
x = cutVertices[0, *]
y = cutVertices[1, *]
z = cutVertices[2, *]

; Compute the center vertex of the clipped plane.
centerX = TOTAL(x)/N_ELEMENTS(x)
centerY = TOTAL(y)/N_ELEMENTS(y)
centerZ = TOTAL(z)/N_ELEMENTS(z)

; Determine the inner radius of the earth polygon.
sphericalCoordinates = CV_COORD(FROM_RECT = cutVertices, $

/TO_SPHERE)
elevation = REFORM(sphericalCoordinates[2, *], $
What’s New in IDL 5.5 Working with Mesh Objects and Routines

348 Chapter 7: New Examples
N_ELEMENTS(sphericalCoordinates[2, *]))
innerRadius = MIN(elevation)

; Derive the corner vertices of the clipping plane.
planeVertices = $

[[centerX - innerRadius, 0, centerZ - innerRadius], $
[centerX + innerRadius, 0, centerZ - innerRadius], $
[centerX + innerRadius, 0, centerZ + innerRadius], $
[centerX - innerRadius, 0, centerZ + innerRadius]]

planeConnectivity = [4, 0, 1, 2, 3]

; Determine the path to the earth's mantle convection
; data file.
convecFile = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize convection image and parameters.
convecSize = [248, 248]
convecImage = BYTARR(convecSize[0], convecSize[1])
convecData = BYTARR(convecSize[0], convecSize[1], 4)

; Open file, read in image, and close file.
OPENR, unit, convecFile, /GET_LUN
READU, unit, convecImage
FREE_LUN, unit

; Create mask of image. Mask out the background (zero
; values of the image, and apply mask to the alpha
; channel.
mask = BYTSCL(convecImage GT 0)
convecData[*, *, 3] = mask

; Convert indexed image to RGB image.
DEVICE, DECOMPOSED = 0
LOADCT, 27
TVLCT, red, green, blue,/GET
convecData[*, *, 0] = red[convecImage]
convecData[*, *, 1] = green[convecImage]
convecData[*, *, 2] = blue[convecImage]

; Initialize an image object of the resulting RGB image
; to be used as a texture map placed on the clipping
; plane.
oPlaneImage = OBJ_NEW('IDLgrImage', convecData, $

INTERLEAVE = 2, BLEND_FUNCTION = [3, 4])

; Initialize polygon of clipping plane, which contains
; the texture map of the image.
oPlanePolygon = OBJ_NEW('IDLgrPolygon', $
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 349
planeVertices, POLYGONS = planeConnectivity, $
SHADING = 0, COLOR = [255, 255, 255], $
TEXTURE_MAP = oPlaneImage, $
TEXTURE_COORD = [[0, 0], [1, 0], [1, 1], [0, 1]])

; Add the clipping plane's polygon to the model.
oModel -> Add, oPlanePolygon

; Display results.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $

TITLE = 'Earth Elevation and Mantle Convection'

; Decimate clipped earth polygon.
numberTriangles = MESH_DECIMATE(clippedVertices, $

clippedConnectivity, decimatedConnectivity, $
VERTICES = decimatedVertices, PERCENT_VERTICES = 10)

; Determine the radius of each vertex to provide color
; at each vertex.
sphericalCoordinates = CV_COORD($

FROM_RECT = decimatedVertices, /TO_SPHERE)
elevation = REFORM(sphericalCoordinates[2, *], $

N_ELEMENTS(sphericalCoordinates[2, *]))

; Update polygon with results from decimating.
oPolygon -> SetProperty, DATA = decimatedVertices, $

POLYGONS = decimatedConnectivity, $
VERT_COLORS = BYTSCL(elevation)

; Display decimation results.
XOBJVIEW, oModel, /BLOCK, SCALE = 1, $

TITLE = 'Decimated Earth and Mantle Convection'

; Cleanup the object references.
OBJ_DESTROY, [oModel, oPalette, oPlaneImage]

END
What’s New in IDL 5.5 Working with Mesh Objects and Routines

350 Chapter 7: New Examples
The results for this example are shown in the following figure.

Figure 7-7: Original Image and Resulting Mesh (top row) and Clipped Mesh and
Added Mantle Plane (bottom row)
Working with Mesh Objects and Routines What’s New in IDL 5.5

Chapter 7: New Examples 351
Copying and Printing Objects

IDL’s Object Graphics system contains five destination objects: window, buffer,
VRML, clipboard, and printer. The window object is used to display to the screen.
The clipboard object is used to display to the operating system’s clipboard. The
printer object is used to display to the system’s printer. The window object is simple
to use, but the use of the clipboard and printer objects depend on the type of objects to
be displayed. This section covers the following topics:

• “Copying a Plot Display to the Clipboard” in the following section

• “Printing a Plot Display” on page 353

• “Copying an Image Display to the Clipboard” on page 355

• “Printing an Image Display” on page 357

Copying a Plot Display to the Clipboard

This example displays a damped sine wave plot in a window object and a clipboard
object. The damped sine wave data comes from the damp_sn2.dat file found in the
examples/data directory. The resolution of the clipboard is based on the resolution
of the screen. The plot is displayed from the system’s clipboard to a platform-related
graphics file (PostScript file on UNIX, Enhanced Metafile on Windows, or a PICT
file on Macintosh) and an encapsulated PostScript file on all the platforms.

PRO SendingPlotToClipboard

; Determine the path to the "damp_sn2.dat" file.
signalFile = FILEPATH('damp_sn2.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the parameters of the data within the file.
signalSize = 512
signal = BYTARR(signalSize)

; Open the file, read in data, and then close the file.
OPENR, unit, signalFile, /GET_LUN
READU, unit, signal
FREE_LUN, unit

; Determine viewplane size and margins.
offsetScale = 150.
viewOffset = offsetScale*[-1., -1., 1., 1.]
signalRange = MAX(signal) - MIN(signal)

; Initialize the display objects.
What’s New in IDL 5.5 Copying and Printing Objects

352 Chapter 7: New Examples
windowSize = [512, 384]
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'Damped Sine Wave with Noise')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., signalSize, signalRange] + $
viewOffset)

oModel = OBJ_NEW('IDLgrModel')

; Initialize the plot object.
oPlot = OBJ_NEW('IDLgrPlot', signal, COLOR = [0, 0, 255])

; Obtain plot ranges.
oPlot -> GetProperty, XRANGE = xPlotRange, $

YRANGE = yPlotRange

; Initialize axes objects, which are based on the plot
; ranges.
oXTitle = OBJ_NEW('IDLgrText', 'Time (seconds)')
oXAxis = OBJ_NEW('IDLgrAxis', 0, RANGE = xPlotRange, $

LOCATION = [xPlotRange[0], yPlotRange[0]], /EXACT, $
TITLE = oXTitle, TICKDIR = 0, $
TICKLEN = (0.02*(yPlotRange[1] - yPlotRange[0])))

oYTitle = OBJ_NEW('IDLgrText', 'Amplitude (centimeters)')
oYAxis = OBJ_NEW('IDLgrAxis', 1, RANGE = yPlotRange, $

LOCATION = [xPlotRange[0], yPlotRange[0]], /EXACT, $
TITLE = oYTitle, TICKDIR = 0, $
TICKLEN = (0.02*(xPlotRange[1] - xPlotRange[0])))

; Add plot and axes to model, which is added to the
; view, and then displayed in the window.
oModel -> Add, oPlot
oModel -> Add, oXAxis
oModel -> Add, oYAxis
oView -> Add, oModel
oModel -> Translate, -50., -50., 0.
oWindow -> Draw, oView

; Determine the centimeter to pixel resolution of the
; plot on the screen.
oWindow -> GetProperty, RESOLUTION = screenResolution

; Initialize clipboard destination object.
oClipboard = OBJ_NEW('IDLgrClipboard', QUALITY = 2, $

DIMENSIONS = windowSize, $
RESOLUTION = screenResolution)

; Determine the type of export file, which depends on
; the screen device.
Copying and Printing Objects What’s New in IDL 5.5

Chapter 7: New Examples 353
screenDevice = !D.NAME
CASE screenDevice OF

'X': fileExtension = '.ps'
'WIN': fileExtension = '.emf'
'MAC': fileExtension = '.pict'

ELSE: RETURN
ENDCASE
clipboardFile = 'damp_sn2' + fileExtension

; Display the view within the clipboard destination,
; which exports to an PS, EMF, or PICT file.
oClipboard -> Draw, oView, FILENAME = clipboardFile, $

/VECTOR
oClipboard -> Draw, oView, FILENAME = 'damp_sn2.eps', $

/POSTSCRIPT, /VECTOR

; Cleanup object references.
OBJ_DESTROY, [oClipboard, oView, oXTitle, oYTitle]

END

Printing a Plot Display

This example sends a damped sine wave plot to a window object and a printer object.
The damped sine wave data comes from the damp_sn2.dat file found in the
examples/data directory. The resolution of the printed page is based on the
resolution of the screen. The model object in the printer object must be scaled to
maintain the same size as displayed on the screen. The location of the view must also
be changed to center the display on the page.

PRO PrintingAPlot

; Determine the path to the "damp_sn2.dat" file.
signalFile = FILEPATH('damp_sn2.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the parameters of the image with the file.
signalSize = 512
signal = BYTARR(signalSize)

; Open the file, read in the image, and then close the
; file.
OPENR, unit, signalFile, /GET_LUN
READU, unit, signal
FREE_LUN, unit

; Determine viewplane size and margins.
offsetScale = 150.
What’s New in IDL 5.5 Copying and Printing Objects

354 Chapter 7: New Examples
viewOffset = offsetScale*[-1., -1., 1., 1.]
signalRange = MAX(signal) - MIN(signal)

; Initialize the display objects.
windowSize = [512, 384]
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'Damped Sine Wave with Noise')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., signalSize, signalRange] + $
viewOffset)

oModel = OBJ_NEW('IDLgrModel')

; Initialize the plot object.
oPlot = OBJ_NEW('IDLgrPlot', signal, COLOR = [0, 0, 255])

; Obtain plot ranges.
oPlot -> GetProperty, XRANGE = xPlotRange, $

YRANGE = yPlotRange

; Initialize axes objects, which are based on the plot
; ranges.
oXTitle = OBJ_NEW('IDLgrText', 'Time (seconds)')
oXAxis = OBJ_NEW('IDLgrAxis', 0, RANGE = xPlotRange, $

LOCATION = [xPlotRange[0], yPlotRange[0]], /EXACT, $
TITLE = oXTitle, TICKDIR = 0, $
TICKLEN = (0.02*(yPlotRange[1] - yPlotRange[0])))

oYTitle = OBJ_NEW('IDLgrText', 'Amplitude (centimeters)')
oYAxis = OBJ_NEW('IDLgrAxis', 1, RANGE = yPlotRange, $

LOCATION = [xPlotRange[0], yPlotRange[0]], /EXACT, $
TITLE = oYTitle, TICKDIR = 0, $
TICKLEN = (0.02*(xPlotRange[1] - xPlotRange[0])))

; Add plot and axes to model, which is added to the
; view, and then displayed in the window.
oModel -> Add, oPlot
oModel -> Add, oXAxis
oModel -> Add, oYAxis
oView -> Add, oModel
oModel -> Translate, -50., -50., 0.
oWindow -> Draw, oView

; Determine the centimeter measurements of the plot
; on the screen.
screenResolution = [!D.X_PX_CM, !D.Y_PX_CM]
windowSizeCM = windowSize/screenResolution

; Initialize printer destination object.
oPrinter = OBJ_NEW('IDLgrPrinter', PRINT_QUALITY = 2, $
Copying and Printing Objects What’s New in IDL 5.5

Chapter 7: New Examples 355
QUALITY = 2)

; Obtain page parameters to determine the page
; size in centimeters.
oPrinter -> GetProperty, DIMENSIONS = pageSize, $

RESOLUTION = pageResolution
pageSizeCM = pageSize*pageResolution

; Calculate a ratio between screen size and page size.
pageScale = windowSizeCM/pageSizeCM

; Use ratio to scale the model within the printer to the
; same size as the model on the screen.
oModel -> Scale, pageScale[0], pageScale[1], 1.

; Determine the center of the page and the screen
; display in pixels.
centering = (((pageSizeCM - windowSizeCM)/4.) $

/pageResolution) - offsetScale

; Move the view to center the page.
oView -> SetProperty, LOCATION = centering

; Display the view within the printer destination.
oPrinter -> Draw, oView, /VECTOR

; Cleanup object references.
OBJ_DESTROY, [oPrinter, oView, oXTitle, oYTitle]

END

Copying an Image Display to the Clipboard

This example displays an image of the Earth’s mantle convection in a window object
and a clipboard object. The convection image data comes from the convec.dat file
found in the examples/data directory. The resolution of the clipboard is based on
the resolution of the screen, which is very similar to copying a plot display. The
image is displayed from the system’s clipboard to a platform-related graphics file
(PostScript file on UNIX, Enhanced Metafile on Windows, or a PICT file on
Macintosh) and an encapsulated PostScript file on all the platforms.

PRO SendingImageToClipboard

; Determine the path to the "convec.dat" file.
convecFile = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the parameters of the image with the file.
What’s New in IDL 5.5 Copying and Printing Objects

356 Chapter 7: New Examples
convecSize = [248, 248]
convecImage = BYTARR(convecSize[0], convecSize[1])

; Open the file, read in the image, and then close the
; file.
OPENR, unit, convecFile, /GET_LUN
READU, unit, convecImage
FREE_LUN, unit

; Initialize the display objects.
windowSize = convecSize
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'Earth Mantle Convection')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., windowSize])

oModel = OBJ_NEW('IDLgrModel')

; Initialize the image object with its palette.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 27
oImage = OBJ_NEW('IDLgrImage', convecImage, $

PALETTE = oPalette)

; Add image to model, which is added to the view, and
; then the view is displayed in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Determine the centimeter to pixel resolution of the
; image on the screen.
screenResolution = [1./!D.X_PX_CM, 1./!D.Y_PX_CM]

; Initialize clipboard destination object.
oClipboard = OBJ_NEW('IDLgrClipboard', QUALITY = 2, $

DIMENSIONS = windowSize, $
RESOLUTION = screenResolution)

; Determine the type of export file, which depends on
; the screen device.
screenDevice = !D.NAME
CASE screenDevice OF

'X': fileExtension = '.ps'
'WIN': fileExtension = '.emf'
'MAC': fileExtension = '.pict'

ELSE: RETURN
ENDCASE
clipboardFile = 'convec' + fileExtension
Copying and Printing Objects What’s New in IDL 5.5

Chapter 7: New Examples 357
; Display the view within the clipboard destination,
; which exports to an PS, EMF, or PICT file.
oClipboard -> Draw, oView, FILENAME = clipboardFile, $

/VECTOR
oClipboard -> Draw, oView, FILENAME = 'convec.eps', $

/POSTSCRIPT, /VECTOR

; Cleanup object references.
OBJ_DESTROY, [oClipboard, oView, oPalette]

END

Printing an Image Display

This example sends an image of the Earth’s mantle convection to a window object
and a printer object. The convection image data comes from the convec.dat file
found in the examples/data directory. The resolution of the printed page is based
on the resolution of the screen. The model object in the printer object must be scaled
to maintain the same size as displayed on the screen. The location of the view must
also be changed to center the display on the page.

PRO PrintingAnImage

; Determine the path to the "convec.dat" file.
convecFile = FILEPATH('convec.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize the parameters of the image with the file.
convecSize = [248, 248]
convecImage = BYTARR(convecSize[0], convecSize[1])

; Open the file, read in the image, and then close the
; file.
OPENR, unit, convecFile, /GET_LUN
READU, unit, convecImage
FREE_LUN, unit

; Initialize the display objects.
windowSize = convecSize
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $

DIMENSIONS = windowSize, $
TITLE = 'Earth Mantle Convection')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., windowSize])

oModel = OBJ_NEW('IDLgrModel')

; Initialize the image object with its palette.
What’s New in IDL 5.5 Copying and Printing Objects

358 Chapter 7: New Examples
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 27
oImage = OBJ_NEW('IDLgrImage', convecImage, $

PALETTE = oPalette)

; Add image to model, which is added to the view, and
; then the view is displayed in the window.
oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

; Determine the centimeter measurements of the image
; on the screen.
screenResolution = [!D.X_PX_CM, !D.Y_PX_CM]
windowSizeCM = windowSize/screenResolution

; Initialize printer destination object.
oPrinter = OBJ_NEW('IDLgrPrinter', PRINT_QUALITY = 2, $

QUALITY = 2)

; Obtain page parameters to determine the page
; size in centimeters.
oPrinter -> GetProperty, DIMENSIONS = pageSize, $

RESOLUTION = pageResolution
pageSizeCM = pageSize*pageResolution

; Calculate a ratio between screen size and page size.
pageScale = windowSizeCM/pageSizeCM

; Use ratio to scale the model within the printer to the
; same size as the model on the screen.
oModel -> Scale, pageScale[0], pageScale[1], 1.

; Determine the center of the page and the image in
; pixels.
centering = ((pageSizeCM - windowSizeCM)/2.) $

/pageResolution

; Move the view to center the image.
oView -> SetProperty, LOCATION = centering

; Display the view within the printer destination.
oPrinter -> Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oPrinter, oView, oPalette]

END
Copying and Printing Objects What’s New in IDL 5.5

Chapter 7: New Examples 359
Capturing IDL Direct Graphics Displays

An IDL display is usually written to an image file by first capturing it into an image
array and then writing the array to an image file. Successful capture of an IDL display
in the Direct Graphics system depends on the visual class of your current device. If
your current device has a PseudoColor visual class, the display should be captured as
an indexed image. If your current device has a TrueColor visual class, the display
should be captured as a RGB (red, green, and blue) image (a three-channel image).
IDL’s TVRD routine has the ability to capture either indexed or RGB images. See
TVRD in the IDL Reference Guide for more information on this routine. This section
includes the following examples:

• “Capturing Direct Graphics Displays on PseudoColor Devices” in the
following section

• “Capturing Direct Graphics Displays on TrueColor Devices” on page 360

Capturing Direct Graphics Displays on PseudoColor Devices

This example changes the current device from the screen to the Z-buffer. The
Z-buffer device is a PseudoColor device. A contour of the elev data (from the
marbells.dat save file) is displayed with a color table in the Z-buffer device. The
display is captured with the TVRD routine. TVRD does not require any arguments or
keywords to be set when capturing a display from a PseudoColor device.

PRO CapturingADisplayinPseudoColor

; Determine path to file.
marbellsFile = FILEPATH('marbells.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Restore "elev" contained with file, which is an IDL
; save file.
RESTORE, marbellsFile

; Initialize window parameters.
windowSize = [512, 384]

; Determine name ('MAC', 'WIN', or 'X') of screen device.
screenDevice = !D.NAME

; Change display device to the Z-buffer, which is a
; pseudocolor device regardless of system settings.
SET_PLOT, 'z'

; Set size of Z-buffer device to be the same as the
What’s New in IDL 5.5 Capturing IDL Direct Graphics Displays

360 Chapter 7: New Examples
; expected screen window size.
DEVICE, SET_RESOLUTION = windowSize

; Load a color table.
LOADCT, 38

; Display data. The "elev" variable is scaled to only
; show the data above 2666 feet.
CONTOUR, elev > 2666, /XSTYLE, /YSTYLE, NLEVELS = 18, $

/FILL

; Capture display.
contourDisplay = TVRD()

; Close Z-buffer device and switch back to the
; screen device.
DEVICE, /CLOSE
SET_PLOT, screenDevice

; If the screen device is TrueColor, set the DECOMPOSED
; keyword to 0 before using any color table related
; routines.
DEVICE, DECOMPOSED = 0

; Load a color table.
LOADCT, 38

; Initialize the display window.
WINDOW, 0, XSIZE = windowSize[0], YSIZE = windowSize[1], $

TITLE = 'Maroon Bells Elevation Data'

; Display the captured image.
TV, contourDisplay

END

Capturing Direct Graphics Displays on TrueColor Devices

This example requires a TrueColor display. If your screen is not a TrueColor device,
you are probably running on a PseudoColor device. For capturing a display on a
PseudoColor device, see “Capturing Direct Graphics Displays on PseudoColor
Devices” on page 359.

In this example, a contour of the elev data (from the marbells.dat save file) is
displayed with a color table. The TVRD routine is used with the TRUE keyword set
to 1 to capture the display as a pixel-interleaved RGB image. TVRD requires the
TRUE keyword to be set when capturing a display from a TrueColor device.
Capturing IDL Direct Graphics Displays What’s New in IDL 5.5

Chapter 7: New Examples 361
PRO CapturingADisplayinTrueColor

; NOTE: this example requires a TrueColor display. If
; you do not have a TrueColor display, see the
; "capturingADisplayinPseudoColor" example routine
; for more information.

; Determine path to file.
marbellsFile = FILEPATH('marbells.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Restore "elev" contained with file, which is an IDL
; save file.
RESTORE, marbellsFile

; Initialize window parameters.
windowSize = [512, 384]

; If the screen device is TrueColor, set the DECOMPOSED
; keyword to 0 before using any color table related
; routines.
DEVICE, DECOMPOSED = 0

; Load in a color table.
LOADCT, 38

; Initialize display window.
WINDOW, 0, XSIZE = windowSize[0], YSIZE = windowSize[1], $

TITLE = 'Maroon Bells Elevation Data'

; Display data. The "elev" variable is scaled to only
; show the data above 2666 feet.
CONTOUR, elev > 2666, /XSTYLE, /YSTYLE, NLEVELS = 18, $

/FILL

; Incorrect capture of display. This use of TVRD
; assumes a PseudoColor display. In other words, only
; one visual channel is being captured as an indexed
; image.
incorrectCapture = TVRD()

; Correct capture of display. Since the display is
; TrueColor, the resulting capture should contain all
; of the channels to capture all of the color
; information within the display. In other words, since
; the display is TrueColor, the resulting capture
; should be a RGB image.
correctCapture = TVRD(TRUE = 1)
What’s New in IDL 5.5 Capturing IDL Direct Graphics Displays

362 Chapter 7: New Examples
; Display incorrect results.
WINDOW, 1, XSIZE = windowSize[0], YSIZE = windowSize[1], $

TITLE = 'Incorrect Captured Display'
TV, incorrectCapture

; Set the DECOMPOSED keyword to 1 displaying a RGB image.
DEVICE, DECOMPOSED = 1

; Display correct results.
WINDOW, 2, XSIZE = windowSize[0], YSIZE = windowSize[1], $

TITLE = 'Correct Captured Display'
TV, correctCapture, TRUE = 1

END
Capturing IDL Direct Graphics Displays What’s New in IDL 5.5

Chapter 7: New Examples 363
Creating and Restoring .sav Files

Using the SAVE procedure, you can easily create reusable custom templates, save
variable data, or share a utility or program you have created with other IDL users by
packaging routines or data into a binary .sav file. This section includes the
following examples of using SAVE and RESTORE:

• “Customizing and Saving an ASCII Template” in the following section

• “Saving and Restoring the XROI Utility and Image ROI Data” on page 365

Warning
While files containing IDL variables can be restored by any version of IDL that
supports the data types of the variables (in particular, by any version of IDL later
than the version that created the SAVE file), files containing IDL routines can only
be restored by versions of IDL that share the same internal code representation.
Since the internal code representation changes regularly, you should always archive
the IDL language source files (.pro files) for routines you are placing in IDL .sav

files so you can recompile the code when a new version of IDL is released.

Customizing and Saving an ASCII Template

When importing an ASCII data file into IDL, you must first describe the format of the
data using the interactive ASCII_TEMPLATE function. If you have a number of
ASCII files that have the same format, you can create and save a customized ASCII
template using the SAVE procedure. After creating a .sav file of your custom
template, you can avoid having to repeatedly define the same fields and records when
reading in ASCII files that have the same structure.

1. At the IDL command line, enter the following to create the variable
plotTemplate, which will contain your custom ASCII template:

plotTemplate = ASCII_TEMPLATE()

A dialog box appears, prompting you to select a file.

2. Select plot.txt located in the examples/data directory.

Note
Another way to import ASCII data is to use the Import ASCII File toolbar button
on the IDLDE toolbar. To use this feature, simply click the button and select
plot.txt from the file selection dialog.
What’s New in IDL 5.5 Creating and Restoring .sav Files

364 Chapter 7: New Examples
3. After selecting the file, the Define Data Type/Range dialog appears. First,
choose the field type. Since the data file is delimited by tabs (or whitespace)
select the Delimited button. In the Data Starts at Line field, specify to begin
reading the data at line 3, not line 1, since there are two comment lines at the
beginning of the file. Click Next to continue.

4. In the Define Delimiter/Fields dialog box, select Tab as the delimiter between
data elements since it is known that tabs were used in the original file. Click
Next.

5. In the Field Specification dialog box, name each field as follows:

• Click on the first row (row 1). In the Name field, enter time.

• Select the second row and enter temperature1.

• Select the third row and enter temperature2.

6. Click Finish.

7. Type the following line at the IDL command line to read in the plot.txt file
using the custom template, plotTemplate:

PLOT_ASCII = READ_ASCII(FILEPATH('plot.txt', SUBDIRECTORY = $
['examples', 'data']), TEMPLATE = plotTemplate)

8. Enter the following line to print the plot.txt file data:

PRINT, PLOT_ASCII

The file contents are printed in the Output Log window. Your output will resemble
the following display.

9. Create a binary .sav file of your custom template by entering the following:

SAVE, plotTemplate, FILENAME='myPlotTemplate.sav'

Figure 7-8: PLOT_ASCII Printout
Creating and Restoring .sav Files What’s New in IDL 5.5

Chapter 7: New Examples 365
10. To restore the template so that you can read another ASCII file, enter:

RESTORE, 'myPlotTemplate.sav'

This file contains your custom ASCII template information stored in the
structure variable, plotTemplate.

Note
If you are attempting to restore a file that is not in your current working directory or
the IDL search path, you will need to specify a path to the file. See RESTORE in
the IDL Reference Guide for more information.

11. After restoring your custom template, you can read another ASCII file that is
delimited in the same way as the original file by using the READ_ASCII
function and specifying plotTemplate for the TEMPLATE:

PLOT_ASCII = READ_ASCII(FILEPATH('plot.txt', $
SUBDIRECTORY = ['examples', 'data']), $
TEMPLATE = plotTemplate)

12. Enter the following to display the contents of the file using the customized
ASCII template structure previously defined using the dialog.

PRINT, PLOT_ASCII

Saving and Restoring the XROI Utility and Image ROI Data

You can easily share your own IDL routines or utilities with other IDL users by using
the SAVE routine to create a binary file of your compiled code. The following
example creates a .sav file of the XROI utility (a .pro file) and from within this
file, restores a secondary .sav file containing selected regions of interest.

1. Type XROI at the command line to open the XROI utility.

2. In the file selection dialog, select mineral.png located in the
examples/data directory.

3. Select the Draw Polygon toolbar button and roughly outline the three large,
angular areas of the image.

4. Select File → Save ROIs and name the file mineralROI.sav. This creates a
.sav file containing the regions of interest selected within the image.

5. In an IDL Editor or text editor, enter the following routine:

PRO myXRoi
What’s New in IDL 5.5 Creating and Restoring .sav Files

366 Chapter 7: New Examples
; Restore ROI object data by specifying a value for the
; RESTORED_OBJECTS keyword.
RESTORE, 'mineralROI.sav', RESTORED_OBJECTS = myROI

; Open XROI, specifying the previously defined value for the
; restored object data as the value for "REGIONS_IN".
XROI, READ_PNG(FILEPATH('mineral.png', $
SUBDIRECTORY = ['examples', 'data'])), $
REGIONS_IN = myROI, /BLOCK

END

Save the routine as myXRoi.pro

6. Exit and restart IDL or enter .FULL_RESET_SESSION at the IDL command
line before creating a .sav file to avoid saving unwanted session information.

7. After re-opening the myXRoi routine, compile the program you just created:

.COMPILE myXRoi.pro

8. Use RESOLVE_ALL to iteratively compile any uncompiled user-written or
library procedures or functions that are called in any already-compiled
procedure or function:

RESOLVE_ALL

Note
RESOLVE_ALL does not resolve class methods, nor procedures or functions that
are called via quoted strings such as CALL_PROCEDURE, CALL_FUNCTION,
or EXECUTE, or in keywords that can contain procedure names such as
TICKFORMAT or EVENT_PRO. You must manually compile these routines.

9. Create a .sav file named myXRoi.sav, containing all of the XROI utility
routines. When the SAVE procedure is called with the ROUTINES keyword
and no arguments, it creates a .sav file containing all currently compiled
routines. Because the routines associated with the XROI utility are the only
ones that are currently compiled in our IDL session, we can create a .sav file
as follows:

SAVE, /ROUTINES, FILENAME='myXRoi.sav'

10. It is not necessary to use RESTORE to open myXRoi.sav. If the main level
routine is named the same as the .sav file, and all necessary files (in this case,
mineralROI.sav and myXRoi.sav) are stored in the current working
directory or the IDL search path, simply type the name of the file, minus the
.sav extension, at the command line:
Creating and Restoring .sav Files What’s New in IDL 5.5

Chapter 7: New Examples 367
myXRoi

The following figure will appear, showing the selected regions of interest.

Figure 7-9: Example of Restoring the XROI Utility and ROI Image Data
What’s New in IDL 5.5 Creating and Restoring .sav Files

368 Chapter 7: New Examples
Handling Table Widgets in GUIs

This example shows how to handle the events issued by a table widget within a
graphical user interface (GUI) written in IDL. The example GUI presents an image
from the abnorm.dat file in a draw widget. The abnorm.dat file is in the
examples/data directory. The table widget in the GUI contains the values of the
image’s array. You can change the values within the table and the image display will
be updated with that value. The GUI also provides labels (text) showing what events
have occurred within the table. See WIDGET_TABLE in the IDL Reference Guide
for more information about the events to IDL’s table widget.

Each widget within the GUI has its own related event handler routine. Since the GUI
is contained in a single program, the event handler routines appear before the GUI-
creation routine. The file containing this program should be named the same as the
GUI-creation (main) routine at the bottom of the program. This routine is called
WorrkingWithTablesInGUIs. The doneEvent routine handles the event from the
Done button and the TableEvent routine handles the events from the table.

; NOTE: IDL GUI programs usually contain more than one
; routine; one routine creates the interface and other
; routines handle the events created by the interface.
; The "workingWithTablesInGUIs" routine is the main
; routine within this example program and is located at
; the bottom of this file. The main routine should
; always be at the end of the program file, and should
; be named the same as the program file name. You
; should look at the main routine first before trying
; to understand the event handling routines.

; A routine to handle the event issued by clicking on
; "Done" button.
PRO DoneEvent, event

; Destroy the GUI.
WIDGET_CONTROL, event.top, /DESTROY

END

; A routine to handle the events caused by the table.
PRO TableEvent, event

; Obtain the current image array from the table to
; redisplay the image when an table event occurs to
; show any updates in the table within the image.
WIDGET_CONTROL, event.id, GET_VALUE = image
Handling Table Widgets in GUIs What’s New in IDL 5.5

Chapter 7: New Examples 369
; Determine the size of the image.
imageSize = SIZE(image, /DIMENSIONS)
; Redisplay image resized to fit the window.
TV, CONGRID(REVERSE(image, 2), $

6*imageSize[0], 6*imageSize[1])

; Initialize descriptions of event types to be used
; within the type label.
CASE event.type OF

0: description = ' (Insert Single Character)'
1: description = ' (Insert Multiple Characters)'
2: description = ' (Delete Text)'
3: description = ' (Text Selection)'
4: description = ' (Cell Selection)'
6: description = ' (Row Height Changed)'
7: description = ' (Column Width Changed)'
8: description = ' (Invalid Data)'

ENDCASE
; Derive the label based on the event type that occured.
typeIndex = 'Type: ' + STRTRIM(event.type, 2) + $

description
; Find the reference to the type label.
typeLabel = WIDGET_INFO(event.top, $

FIND_BY_UNAME = 'type')
; Use the reference to update the type label with the
; event type that occured.
WIDGET_CONTROL, typeLabel, SET_VALUE = typeIndex

; If the event type is 4, a cell or cells have been
; selected. If a cell or cells have been selected, the
; selection label is updated to show a change in
; selection.
IF (event.type EQ 4) THEN BEGIN

; Derive the label based on the new selection.
left = STRTRIM(event.sel_left, 2)
top = STRTRIM(event.sel_top, 2)
right = STRTRIM(event.sel_right, 2)
bottom = STRTRIM(event.sel_bottom, 2)
selectionValue = 'Left = ' + left + ', Top = ' + $
top + ', Right = ' + right + ', and Bottom = ' + $
bottom
; Find the reference to the selection label.
selectionLabel = WIDGET_INFO(event.top, $
FIND_BY_UNAME = 'selection')
; Use the reference to update the selection label
; with the new selection that occured.
WIDGET_CONTROL, selectionLabel, $
SET_VALUE = selectionValue

ENDIF
What’s New in IDL 5.5 Handling Table Widgets in GUIs

370 Chapter 7: New Examples
END

; The main routine used to create the interface and
; start the event handlers.
PRO WorkingWithTablesInGUIs

; Determine path to file.
abnormFile = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize display parameters.
abnormSize = [64, 64]
abnormImage = BYTARR(abnormSize[0], abnormSize[1])

; Open file, read in image, and close file.
OPENR, unit, abnormFile, /GET_LUN
READU, unit, abnormImage
FREE_LUN, unit

; Create background base to contain the entire
; interface. This type of base is usually referred to
; as a "top level base". WIDGETs are displayed in the
; order in which they are created. Since the "top level"
; (background) is a column base, the WIDGETs in this
; program will be stacked from top to bottom:
;
; WIDGET_DRAW (the image display)
; WIDGET_TABLE (the table of image values)
; WIDGET_LABELs (text describing events)
; WIDGET_BUTTON (the done button)
topLevelBase = WIDGET_BASE(/COLUMN, $

TITLE = 'Gated Blood Pool')

; Create a draw WIDGET to display the image.
abnormDraw = WIDGET_DRAW(topLevelBase, $

XSIZE = 6*abnormSize[0], YSIZE = 6*abnormSize[1])

; Create a table WIDGET to view the values within the
; image's array.
abnormTable = WIDGET_TABLE(topLevelBase, $

; The image's rows are reversed to match the image's
; display.
VALUE = REVERSE(abnormImage, 2), $
; The row labels are changed to match the values of
; the reversed-rowed image.
ROW_LABELS = STRTRIM((abnormSize[1] - 1) - $
INDGEN(abnormSize[1]), 2), $
; All events are specified to show all the possible
Handling Table Widgets in GUIs What’s New in IDL 5.5

Chapter 7: New Examples 371
; events associated with the table. The cells are
; table are made editable to show how to link a table
; to an image display.
/ALL_EVENTS, /EDITABLE, $
; Allow scrolling within the table, which will be
; 4 columns by 10 rows in size.
/SCROLL, X_SCROLL_SIZE = 4, Y_SCROLL_SIZE = 10, $
; Associate an event handling routine specifically
; just for the table events to maintain structure
; within this program.
EVENT_PRO = 'TableEvent')

; Create a label to show what type of table event is
; occuring.
typeLabel = WIDGET_LABEL(topLevelBase, /ALIGN_CENTER, $

VALUE = 'Type: ', /DYNAMIC_RESIZE, UNAME = 'type')

; Create a title for the selection label.
selectionTitle = WIDGET_LABEL(topLevelBase, $

/ALIGN_LEFT, VALUE = 'Selection Information:')

; Create a label to show the current cell selection of
; the table.
selectionLabel = WIDGET_LABEL(topLevelBase, $

/ALIGN_CENTER, /DYNAMIC_RESIZE, UNAME = 'selection', $
VALUE = 'Left = 0, Top = 0, Right = 0, and Bottom = 0')

; Create a button to the user to quit out of the
; interface.
doneButton = WIDGET_BUTTON(topLevelBase, $

; The "VALUE" is the label displayed on the button.
VALUE = 'Done', $
; Associate an event handling routine specifically
; just for the done event to maintain structure
; within this program.
EVENT_PRO = 'DoneEvent')

; Display the interface.
WIDGET_CONTROL, topLevelBase, /REALIZE

; Determine the number reference of the window within
; the draw WIDGET. The number will be used to set the
; display to the draw WIDGET before image is shown.
WIDGET_CONTROL, abnormDraw, GET_VALUE = abnormWindow

; Set the display to the draw WIDGET's window.
WSET, abnormWindow

; If you are on a TrueColor display, set
What’s New in IDL 5.5 Handling Table Widgets in GUIs

372 Chapter 7: New Examples
; the DECOMPOSED keyword to 0 before using any color
; table related routines.
DEVICE, DECOMPOSED = 0

; Load a color table.
LOADCT, 5

; Display the image resized to fit the window.
TV, CONGRID(abnormImage, 6*abnormSize[0], $

6*abnormSize[1])

; Start the event handling routines.
XMANAGER, 'WorkingWithTablesInGUIs', topLevelBase

END
Handling Table Widgets in GUIs What’s New in IDL 5.5

Chapter 7: New Examples 373
The resulting GUI is similar to the following figure.

Figure 7-10: Example of a GUI Containing a Table
What’s New in IDL 5.5 Handling Table Widgets in GUIs

374 Chapter 7: New Examples
Finding Straight Lines in Images

This example uses the Hough transform to find straight lines within an image. The
image comes from the rockland.png file found in the examples/data directory.
The image is a saturation composite of a 24 hour period in Rockland, Maine. A
saturation composite is normally used to highlight intensities, but the Hough
transform is used in this example to extract the power lines, which are straight lines.
The Hough transform is applied to the green band of the image. The results of the
transform are scaled to only include lines longer than 100 pixels. The scaled results
are then backprojected by the Hough transform to produce an image of only the
power (straight) lines.

PRO FindingPowerLinesInRocklandME

; Determine path to file.
file = FILEPATH('rockland.png', $

SUBDIRECTORY = ['examples', 'data'])

; Import image from file into IDL.
image = READ_PNG(file)

; Determine size of image.
imageSize = SIZE(image, /DIMENSIONS)

; Display cropped image
DEVICE, DECOMPOSED = 1
WINDOW, 0, XSIZE = imageSize[1], YSIZE = imageSize[2], $

TITLE = 'Rockland, Maine'
TV, image, TRUE = 1

; Use layer from green channel as the intensity of the
; image.
intensity = REFORM(image[1, *, *])

; Determine size of intensity image.
intensitySize = SIZE(intensity, /DIMENSIONS)

; Mask intensity image to highlight power lines.
mask = intensity GT 240

; Transform mask.
transform = HOUGH(mask, RHO = rho, THETA = theta)

; Scale transform to obtain just the power lines.
transform = (TEMPORARY(transform) - 100) > 0
Finding Straight Lines in Images What’s New in IDL 5.5

Chapter 7: New Examples 375
; Backproject to compare with original image.
backprojection = HOUGH(transform, /BACKPROJECT, $

RHO = rho, THETA = theta, $
NX = intensitySize[0], NY = intensitySize[1])

; Reverse color table to clarify lines. If you are on
; a TrueColor display, set the DECOMPOSED keyword to 0
; before using any color table related routines.
DEVICE, DECOMPOSED = 0
LOADCT, 0
TVLCT, red, green, blue, /GET
TVLCT, 255 - red, 255 - green, 255 - blue

; Display results.
WINDOW, 1, XSIZE = intensitySize[0], $

YSIZE = intensitySize[1], $
TITLE = 'Resulting Power Lines'

TVSCL, backprojection

END

The results for this example are shown in the following figure.

Figure 7-11: Original Image (left) and Filtered Image (right)
What’s New in IDL 5.5 Finding Straight Lines in Images

376 Chapter 7: New Examples
Color Density Contrasting in an Image

This example uses the Radon transform to provide more contrast within an image
based on its color density. The image comes from the endocell.jpg file found in
the examples/data directory. The image is a photomicrograph of cultured
endothelial cells. The edges (outlines) within the image are defined by the Roberts
filter. The Radon transform is applied to the filtered image. The high intensity values
within the triangle of the center of the transform represent high color density within
the filtered and original image. The transform is scaled to only include the values
above the mean of the transform. The scaled results are backprojected by the Radon
transform. The resulting backprojection is used as a mask on the original image. The
final resulting image shows more color contrast bounded by the edges of the filtered
image.

PRO ContrastingCells

; Determine path to file.
file = FILEPATH('endocell.jpg', $

SUBDIRECTORY = ['examples', 'data'])

; Import image within file into IDL.
READ_JPEG, file, endocellImage

; Determine image's size, but divide it by 4 to reduce
; the image.
imageSize = SIZE(endocellImage, /DIMENSIONS)/4

; Resize image to quarter its original length and width.
endocellImage = CONGRID(endocellImage, $

imageSize[0], imageSize[1])

; If you are on a truecolor display, set the DECOMPOSED
; keyword to the DEVICE command to zero before using
; any color table related routines.
DEVICE, DECOMPOSED = 0

; Load in the STD GAMMA-II color table.
LOADCT, 5

; Initialize the display.
WINDOW, 0, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Original (left) and Filtered (right)'

; Display original image.
TV, endocellImage, 0
Color Density Contrasting in an Image What’s New in IDL 5.5

Chapter 7: New Examples 377
; Filter original image to clarify the edges of the
; cells.
image = ROBERTS(endocellImage)

; Display filtered image.
TVSCL, image, 1

; Transform the filtered image.
transform = RADON(image, RHO = rho, THETA = theta)

; Display transforms of the image.
transformSize = SIZE(transform, /DIMENSIONS)
WINDOW, 1, TITLE = 'Original Transform (top) and ' + $

'Scaled Transform (bottom)', $
XSIZE = transformSize[0], YSIZE = 2*transformSize[1]

TVSCL, transform, 0

; Scale the transform to include only the density
; values above the mean of the transform.
scaledTransform = transform > MEAN(transform)

; Display scaled transform.
TVSCL, scaledTransform, 1

; Backproject the scaled transform.
backprojection = RADON(scaledTransform, /BACKPROJECT, $

RHO = rho, THETA=theta, NX = imageSize[0], $
NY = imageSize[1])

; Initialize another display.
WINDOW, 2, XSIZE = 2*imageSize[0], YSIZE = imageSize[1], $

TITLE = 'Backproject (left) and Final Result (right)'

; Display backprojection.
TVSCL, backprojection, 0

; Use the backprojection as a mask to provide
; a color density contrast of the original image.
constrastingImage = endocellImage*backprojection

; Display resulting contrast image.
TVSCL, endocellImage*backprojection, 1

END
What’s New in IDL 5.5 Color Density Contrasting in an Image

378 Chapter 7: New Examples
The results for this example are shown in the following figure.

Figure 7-12: Original and Filtered Images (left), Original and Scaled Transforms
(middle), and Backprojection and Final Resulting Contrast (right)
Color Density Contrasting in an Image What’s New in IDL 5.5

Chapter 7: New Examples 379
Removing Noise from an Image with FFT

This example uses the FFT transform to remove noise from an image. The image
comes from the abnorm.dat file found in the examples/data directory. The first
display contains the original image and its FFT transform. The noise is very evident
in the image. A surface of the transform helps to determine the threshold necessary to
remove the noise from the image. In the surface of the transform, the noise appears
random and below a ridge containing a spike. The ridge and spike represent the actual
data within the image. A mask is applied to the transform to remove the noise and the
inverse transform is applied resulting in a clearer image.

PRO RemovingNoiseFromAnImageWithFFT

; Determine the path to the file.
file = FILEPATH('abnorm.dat', $

SUBDIRECTORY = ['examples', 'data'])

; Initialize size parameter and image array.
imageSize = [64, 64]
image = BYTARR(imageSize[0], imageSize[1])

; Open file, read in image, and close file.
OPENR, unit, file, /GET_LUN
READU, unit, image
FREE_LUN, unit

; Initialize display parameters, including a color
; table. If you are on a TrueColor display, set
; the DECOMPOSED keyword to 0 before using any color
; table related routines.
displaySize = [128, 128]
DEVICE, DECOMPOSED = 0
LOADCT, 5
WINDOW, 0, XSIZE = 2*displaySize[0], $

YSIZE = displaySize[1], $
TITLE = 'Original Image : Transformation'

; Display original image.
TVSCL, CONGRID(image, displaySize[0], displaySize[1], $

/INTERP), 0

; Transform image.
transform = ALOG(SHIFT(FFT(image), (imageSize[0]/2), $

(imageSize[1]/2)))

; Display transformation.
TVSCL, CONGRID(transform, displaySize[0], $
What’s New in IDL 5.5 Removing Noise from an Image with FFT

380 Chapter 7: New Examples
displaySize[1], /INTERP), 1

; Scale transform make its minimum value equal to zero.
scaledTransform = transform - MIN(transform)

; Display results of scaling.
WINDOW, 1, TITLE = 'Transform Scaled to a Zero Minimum'
SURFACE, scaledTransform, /XSTYLE, /YSTYLE, $

TITLE = 'Transform Scaled to a Zero Minimum'

; Filter scaled transform to only include high
; frequency data.
mask = FLOAT(scaledTransform) GT 6.
filteredTransform = (scaledTransform*mask) + $

MIN(transform)

; Initialize display.
WINDOW, 2, XSIZE = 2*displaySize[0], $

YSIZE = displaySize[1], $
TITLE = 'Filtered Transformation : Results'

; Display filtered transform.
TVSCL, CONGRID(FLOAT(filteredTransform), displaySize[0], $

displaySize[1], /INTERP), 0

; Apply inverse transformation to filtered transform.
inverseTransform = ABS(FFT(EXP(filteredTransform), $

/INVERSE))

; Display results of inverse transformation.
TVSCL, CONGRID(inverseTransform, displaySize[0], $

displaySize[1], /INTERP), 1

END

The results for this example are shown in the following figure.

Figure 7-13: Original Image and FFT Transform (left) and Filtered FFT Transform
and Resulting Image (right)
Removing Noise from an Image with FFT What’s New in IDL 5.5

Chapter 7: New Examples 381
Using Double and Triple Integration

You can use the QROMB, QROMO, and QSIMP routines within the user-supplied
function of these same routines. This ability allows you to perform double and triple
integration. Each term of an integrand (the equation within the integral) can contain
another integration method. The double and triple integrations are performed over
each term of the integrand. The following two examples use double integration to
determine the volume under a surface defined by a two-dimensional equation and
triple integration to determine the mass of a volume with a density defined by a three-
dimensional equation, respectively.

This section includes the following topics:

• “Integrating to Determine the Volume Under a Surface (Double Integration)”
in the following section

• “Integrating to Determine the Mass of a Volume (Triple Integration)” on
page 382

Integrating to Determine the Volume Under a Surface
(Double Integration)

This example evaluates the volume under a surface by using the following double
integration:

A surface is defined by a two-dimensional equation. The volume under this surface
can be determined by performing a double integration over a specific region
(boundary). This example performs the double integration over the range 0 to 1 in the
x-direction and 0 to 1 in the y-direction. The correct solution to this integration is 3.

This example program is made up of four routines: the main routine, the integration
in the y direction, the second integration of the x coefficient, and the second
integration of the x2 coefficient. The main routine is the last routine in the program.
The file containing this program should be named the same as the main routine.

FUNCTION XSquaredCoef, x

; Integration of the x squared coefficient.
secondIntegration = 9.*x^2
RETURN, secondIntegration

volume 9x
2
y

2
4xy 1+ +() x ydd

0

1

�
0

1

�=
What’s New in IDL 5.5 Using Double and Triple Integration

382 Chapter 7: New Examples
END

FUNCTION XCoef, x

; Integration of the linear x coefficient.
secondIntegration = x
RETURN, secondIntegration

END

FUNCTION YDirection, y

; Re-write equation to consider both x coefficents.
firstIntegration = QROMB('XSquaredCoef', 0., 1.)*y^2 $
+ 4.*(QROMB('XCoef', 0., 1.))*y + 1.
RETURN, firstIntegration

END

PRO DoubleIntegration

; Determine the volume under the surface represented
; by 9x^2y^2 + 4xy + 1 over a specific region.
volume = QROMB('YDirection', 0., 1.)

; Output results.
PRINT, 'Resulting Volume: ', volume

END

Integrating to Determine the Mass of a Volume (Triple
Integration)

This example evaluates the mass of a volume by using the following triple integration
on a three-dimensional equation representing its density:

The density of a volume is defined by a three-dimensional equation. The mass of this
volume can be determined by performing a triple integration over a specific region
(boundary). This example performs the triple integration over the range 0 to 1 in the
x-direction, 0 to 1 in the y-direction, and 0 to 1 in the z-direction. The correct solution
to this integration is 3.

mass 9x
2
y

2
8xyz 1+ +() x y zddd

0

1

�
0

1

�
0

1

�=
Using Double and Triple Integration What’s New in IDL 5.5

Chapter 7: New Examples 383
This example program is made up of six routines: the main routine, the integration in
the z-direction, the second integration of the xy coefficient, the second integration of
the second x2y2 coefficient, the third integration in the x coefficient, and the third
integration in the x2 coefficient. The main routine is the last routine in the program.
The file containing this program should be named the same as the main routine.

FUNCTION XSquaredCoef, x

; Integration of the x squared coefficient.
thirdIntegration = 9.*x^2
RETURN, thirdIntegration

END

FUNCTION XCoef, x

; Integration of the linear x coefficient.
thirdIntegration = x
RETURN, thirdIntegration

END

FUNCTION XSquaredYSquaredCoef, y

; Integration of the y squared coefficient.
secondIntegration = QROMB('XSquaredCoef', 0., 1.)*y^2
RETURN, secondIntegration

END

FUNCTION XYCoef, y

; Integration of the linear y coefficient.
secondIntegration = QROMB('XCoef', 0., 1.)*y
RETURN, secondIntegration

END

FUNCTION ZDirection, z

; Re-write equation to consider all the x and y
; coefficients.
firstIntegration = QROMB('XSquaredYSquaredCoef', 0., 1.) + $
8.*(QROMB('XYCoef', 0., 1.))*z + 1.
RETURN, firstIntegration

END
What’s New in IDL 5.5 Using Double and Triple Integration

384 Chapter 7: New Examples
PRO TripleIntegration

; Determine the mass of the density represented
; by 9x^2y^2 + 8xyz + 1 over a specific region.
mass = QROMB('ZDirection', 0., 1.)

; Output results.
PRINT, 'Resulting Mass: ', mass

END
Using Double and Triple Integration What’s New in IDL 5.5

Chapter 7: New Examples 385
Obtaining Irregular Grid Intervals

The XOUT and YOUT keywords allow you to obtain an irregular interval from the
TRIGRID routine. This example creates an irregularly-gridded dataset of a Gaussian
surface. A grid is formed from these points with the TRIANGULATE and TRIGRID
routines. The inputs to the XOUT and YOUT keywords are determined at random to
produce an irregular interval. These inputs are sorted before setting them to XOUT
and YOUT because these keywords require monotonically ascending or descending
values. The lines of the resulting surface are spaced at the irregular intervals provided
by the settings of the XOUT and YOUT keywords. See TRIANGULATE and
TRIGRID in the IDL Reference Guide for more information on these routines.

PRO GriddingIrregularIntervals

; Make 100 normal x, y points:
x = RANDOMN(seed, 100)
y = RANDOMN(seed, 100)
PRINT, MIN(x), MAX(x)
PRINT, MIN(y), MAX(y)

; Make a Gaussian surface:
z = EXP(-(x^2 + y^2))

; Obtain triangulation:
TRIANGULATE, x, y, triangles, boundary

; Create random x values. These values will be used to
; form the x locations of the resulting grid.
gridX = RANDOMN(seed, 30)
; Sort x values. Sorted values are required for the XOUT
; keyword.
sortX = UNIQ(gridX, SORT(gridX))
gridX = gridX[sortX]
; Output sorted x values to be used with the XOUT
; keyword.
PRINT, 'gridX:'
PRINT, gridX

; Create random y values. These values will be used to
; form the y locations of the resulting grid.
gridY = RANDOMN(seed, 30)
; Sort y values. Sorted values are required for the YOUT
; keyword.
sortY = UNIQ(gridY, SORT(gridY))
gridY = gridY[sortY]
; Output sorted y values to be used with the YOUT
What’s New in IDL 5.5 Obtaining Irregular Grid Intervals

386 Chapter 7: New Examples
; keyword.
PRINT, 'gridY:'
PRINT, gridY

; Derive grid of initial values. The location of the
; resulting grid points are the inputs to the XOUT and
; YOUT keywords.
grid = TRIGRID(x, y, z, triangles, XOUT = gridX, $

YOUT = gridY, EXTRAPOLATE = boundary)

; Display resulting grid. The grid lines are not
; at regular intervals because of the randomness of the
; inputs to the XOUT and YOUT keywords.
SURFACE, grid, gridX, gridY, /XSTYLE, /YSTYLE

END

A possible result for this example is shown in the following figure.

Figure 7-14: A Possible Irregular Interval Result
Obtaining Irregular Grid Intervals What’s New in IDL 5.5

Chapter 7: New Examples 387
Calculating Incomplete Beta and Gamma
Functions

Tolerance controls allow you to calculate the accuracy of the incomplete beta and
gamma functions. More accuracy usually provides better results, but can cause
slower computation speeds. If faster speeds are important, a less accurate calculation
may be more desirable. This trade-off can be maintained through tolerances.

Iteration controls allow you to expand the computation enough to converge to a
result. Calculation of these functions may not converge to a result within the default
number of iterations. If the number of iterations is increased, the calculation may
converge.

This section includes the following topics:

• “Working With Tolerances in the Incomplete Beta Function” in the following
section

• “Working With Iteration Controls in the Incomplete Gamma Function” on
page 388

Working With Tolerances in the Incomplete Beta Function

This example shows the difference in accuracy between the incomplete beta function
computed with a low tolerance and the incomplete beta function computed with a
high tolerance. The resulting surfaces show the relative errors of each. The relative
error of the low tolerance ranges from 0 to 0.002 percent. The relative error of the
high tolerance ranges from 0 to 0.0000000004 percent.

PRO UsingIBETAwithEPS

; Define an array of parametric exponents.
parameterA = (DINDGEN(101)/100. + 1.D) # REPLICATE(1.D, 101)
parameterB = REPLICATE(1.D, 101) # (DINDGEN(101)/10. + 1.D)

; Define the upper limits of integration.
upperLimits = REPLICATE(0.1D, 101, 101)

; Compute the incomplete beta functions.
betaFunctions = IBETA(parameterA, parameterB, $

upperLimits)

; Compute the incomplete beta functions with a less
; accurate tolerance set.
laBetaFunctions = IBETA(parameterA, parameterB, $
What’s New in IDL 5.5 Calculating Incomplete Beta and Gamma Functions

388 Chapter 7: New Examples
upperLimits, EPS = 3.0e-4)

; Compute relative error.
relativeError = 100.* $

ABS((betaFunctions - laBetaFunctions)/betaFunctions)

; Display resulting relative error.
WINDOW, 0, TITLE = 'Compare IBETA with Less Accurate EPS'
SURFACE, relativeError, parameterA, parameterB, $

/XSTYLE, /YSTYLE, TITLE = 'Relative Error', $
XTITLE = 'Parameter A', YTITLE = 'Parameter B', $
ZTITLE = 'Percent Error (%)', CHARSIZE = 1.5

; Compute the incomplete beta functions with a more
; accurate tolerance set..
maBetaFunctions = IBETA(parameterA, parameterB, $

upperLimits, EPS = 3.0e-10)

; Compute relative error.
relativeError = 100.* $

ABS((maBetaFunctions - betaFunctions)/maBetaFunctions)

; Display resulting relative error.
WINDOW, 1, TITLE = 'Compare IBETA with More Accurate EPS'
SURFACE, relativeError, parameterA, parameterB, $

/XSTYLE, /YSTYLE, TITLE = 'Relative Error', $
XTITLE = 'Parameter A', YTITLE = 'Parameter B', $
ZTITLE = 'Percent Error (%)', CHARSIZE = 1.5

END

Working With Iteration Controls in the Incomplete Gamma
Function

This example shows how increasing the maximum number of iterations can change
the outcome of computing the incomplete gamma function. Normally, the calculation
of the incomplete gamma function will not converge within 100 iterations (the default
number of iterations) when the parametric exponent is set to 400 and the upper limit
is set to 400. The ITMAX keyword to the IGAMMA routine is set to 200 to allow the
calculation to converge to a value of 0.506686 within 101 iterations.

PRO UsingIGAMMAwithITMAX

; Define parametric exponent.
parameterA = 400.

; Define the upper limit of integration.
Calculating Incomplete Beta and Gamma Functions What’s New in IDL 5.5

Chapter 7: New Examples 389
upperLimits = 400.

; NOTE: with the above parameter and limit, IGAMMA will
; not converge unless the number of iterations is
; increased above the default of 100.

; Compute the incomplete gamma function.
gammaFunction = IGAMMA(parameterA, upperLimits, $

ITMAX = 200, ITER = numberIteration)

; Output results.
PRINT, 'Resulting Gamma Function: ', gammaFunction
PRINT, 'Number of Iterations: ', numberIteration

END
What’s New in IDL 5.5 Calculating Incomplete Beta and Gamma Functions

390 Chapter 7: New Examples
Determining Bessel Function Accuracy

Different orders between Bessel functions have recurrence relationships to each
other. These relationships can be used to determine how accurately IDL is computing
the Bessel functions. In the following examples, the recurrence relationships at each
order are set to zero and the left side of the equations are plotted. These plots show
how close the left side of the equations are to zero, and therefore, how accurate the
Bessel functions are computed within IDL.

This section includes the following topics:

• “Analyzing the Bessel Function of the First Kind” in the following section

• “Analyzing the Bessel Function of the Second Kind” on page 392

• “Analyzing the Modified Bessel Function of the First Kind” on page 394

• “Analyzing the Modified Bessel Function of the Second Kind” on page 396

Analyzing the Bessel Function of the First Kind

This example uses the following recurrence relationship:

where J(x) is the Bessel function of the first kind of order n –1, n, or n + 1. The
resulting plots are for n equal to 1 through 6. All of these plots show that this Bessel
function is calculated within machine tolerance.

PRO AnalyzingBESELJ

; Derive x values.
x = (DINDGEN(1000) + 1.)/100.

; Initialize display window.
WINDOW, 0, TITLE = 'Bessel Functions'

; Display the first 8 orders of the Bessel function of
; the first kind.
PLOT, x, BESELJ(x, 0), /XSTYLE, /YSTYLE, $

XTITLE = 'x', YTITLE = 'f(x)', $
TITLE = 'Bessel Functions of the First Kind'

OPLOT, x, BESELJ(x, 1), LINESTYLE = 1
OPLOT, x, BESELJ(x, 2), LINESTYLE = 2
OPLOT, x, BESELJ(x, 3), LINESTYLE = 3
OPLOT, x, BESELJ(x, 4), LINESTYLE = 4
OPLOT, x, BESELJ(x, 5), LINESTYLE = 5

x Jn 1– x() Jn 1+ x()+() 2nJn x()– 0=
Determining Bessel Function Accuracy What’s New in IDL 5.5

Chapter 7: New Examples 391
OPLOT, x, BESELJ(x, 6), LINESTYLE = 0
OPLOT, x, BESELJ(x, 7), LINESTYLE = 1

; Initialize display window for recurrence relations.
WINDOW, 1, XSIZE = 896, YSIZE = 512, $

TITLE = 'Testing the Recurrence Relations'
!P.MULTI = [0, 2, 3, 0, 0]

; Initialize title variable.
nString = ['0', '1', '2', '3', '4', '5', '6', '7']

; Display recurrence relationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n = 1, 6 DO BEGIN

equation = x*(BESELJ(x, (n - 1)) + $
BESELJ(x, (n + 1))) - 2.*FLOAT(n)*BESELJ(x, n)

PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $
TITLE = 'n = ' + nString[n] + ': Orders of ' + $
nString[n - 1] + ', ' + nString[n] + ', and ' + $
nString[n + 1]

PRINT, 'n = ' + nString[n] + ': '
PRINT, 'minimum = ', MIN(equation)
PRINT, 'maximum = ', MAX(equation)

ENDFOR

; Return display window back to its default setting, one
; display per window.
!P.MULTI = 0

END
What’s New in IDL 5.5 Determining Bessel Function Accuracy

392 Chapter 7: New Examples
The results for this example are shown in the following figure.

Analyzing the Bessel Function of the Second Kind

This example uses the following recurrence relationship:

where Y(x) is the Bessel function of the second kind of order n - 1, n, or n + 1. The
resulting plots are for n equal to 1 through 6. All of these plots show that this Bessel
function is calculated within machine tolerance.

PRO AnalyzingBESELY

; Derive x values.
x = (DINDGEN(1000) + 1.)/200. + 5.

; Initialize display window.
WINDOW, 0, TITLE = 'Bessel Functions'

; Display the first 8 orders of the Bessel function of
; the second kind.
PLOT, x, BESELY(x, 0), /XSTYLE, $

Figure 7-15: Recurrence Relationship for J(x)

x Yn 1– x() Yn 1+ x()+() 2nYn x()– 0=
Determining Bessel Function Accuracy What’s New in IDL 5.5

Chapter 7: New Examples 393
/YSTYLE, YRANGE = [-1.3, 0.4], $
XTITLE = 'x', YTITLE = 'f(x)', $
TITLE = 'Bessel Functions of the Second Kind'

OPLOT, x, BESELY(x, 1), LINESTYLE = 1
OPLOT, x, BESELY(x, 2), LINESTYLE = 2
OPLOT, x, BESELY(x, 3), LINESTYLE = 3
OPLOT, x, BESELY(x, 4), LINESTYLE = 4
OPLOT, x, BESELY(x, 5), LINESTYLE = 5
OPLOT, x, BESELY(x, 6), LINESTYLE = 0
OPLOT, x, BESELY(x, 7), LINESTYLE = 1

; Initialize display window for recurrence relations.
WINDOW, 1, XSIZE = 896, YSIZE = 512, $

TITLE = 'Testing the Recurrence Relations'
!P.MULTI = [0, 2, 3, 0, 0] ; for multiple displays

; Initialize title variable.
nString = ['0', '1', '2', '3', '4', '5', '6', '7']

; Display recurrence relationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n = 1, 6 DO BEGIN

equation = x*(BESELY(x, (n - 1)) + $
BESELY(x, (n + 1))) - 2.*FLOAT(n)*BESELY(x, n)

PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $
TITLE = 'n = ' + nString[n] + ': Orders of ' + $
nString[n - 1] + ', ' + nString[n] + ', and ' + $
nString[n + 1]

PRINT, 'n = ' + nString[n] + ': '
PRINT, 'minimum = ', MIN(equation)
PRINT, 'maximum = ', MAX(equation)

ENDFOR

; Return display window back to its default setting, one
; display per window.
!P.MULTI = 0

END
What’s New in IDL 5.5 Determining Bessel Function Accuracy

394 Chapter 7: New Examples
The results for this example are shown in the following figure.

Analyzing the Modified Bessel Function of the First Kind

This example uses the following recurrence relationship:

where I(x) is the modified Bessel function of the first kind of order n - 1, n, or n + 1.
The resulting plots are for n equal to 1 through 6. All of these plots show that this
Bessel function is calculated within machine tolerance.

PRO AnalyzingBESELI

; Derive x values.
x = (DINDGEN(1000) + 1.)/200.

; Initialize display window.
WINDOW, 0, TITLE = 'Modified Bessel Functions'

; Display the first 8 orders of the modified Bessel
; function of the first kind.
PLOT, x, BESELI(x, 0), /XSTYLE, /YSTYLE, $

Figure 7-16: Recurrence Relationship for Y(x)

x In 1– x() In 1+ x()–() 2nIn x()– 0=
Determining Bessel Function Accuracy What’s New in IDL 5.5

Chapter 7: New Examples 395
XTITLE = 'x', YTITLE = 'f(x)', $
TITLE = 'Modified Bessel Functions of the First Kind'

OPLOT, x, BESELI(x, 1), LINESTYLE = 1
OPLOT, x, BESELI(x, 2), LINESTYLE = 2
OPLOT, x, BESELI(x, 3), LINESTYLE = 3
OPLOT, x, BESELI(x, 4), LINESTYLE = 4
OPLOT, x, BESELI(x, 5), LINESTYLE = 5
OPLOT, x, BESELI(x, 6), LINESTYLE = 0
OPLOT, x, BESELI(x, 7), LINESTYLE = 1

; Initialize display window for recurrence relations.
WINDOW, 1, XSIZE = 896, YSIZE = 512, $

TITLE = 'Testing the Recurrence Relations'
!P.MULTI = [0, 2, 3, 0, 0]

; Initialize title variable.
nString = ['0', '1', '2', '3', '4', '5', '6', '7']

; Display recurrence relationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n = 1, 6 DO BEGIN

equation = x*(BESELI(x, (n - 1)) - $
BESELI(x, (n + 1))) - 2.*FLOAT(n)*BESELI(x, n)

PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $
TITLE = 'n = ' + nString[n] + ': Orders of ' + $
nString[n - 1] + ', ' + nString[n] + ', and ' + $
nString[n + 1]

PRINT, 'n = ' + nString[n] + ': '
PRINT, 'minimum = ', MIN(equation)
PRINT, 'maximum = ', MAX(equation)

ENDFOR

; Return display window back to its default setting, one
; display per window.
!P.MULTI = 0

END
What’s New in IDL 5.5 Determining Bessel Function Accuracy

396 Chapter 7: New Examples
The results for this example are shown in the following figure.

Analyzing the Modified Bessel Function of the Second Kind

This example uses the following recurrence relationship:

where K(x) is the modified Bessel function of the second kind of order n - 1, n, or n +
1. The resulting plots are for n equal to 1 through 6. All of these plots show that this
Bessel function is calculated within machine tolerance.

PRO AnalyzingBESELK

; Derive x values.
x = (DINDGEN(1000) + 1.)/200. + 5.

; Initialize display window.
WINDOW, 0, TITLE = 'Modified Bessel Functions'

; Display the first 8 orders of the modified Bessel
; function of the second kind.
PLOT, x, BESELK(x, 0), /XSTYLE, /YSTYLE, $

Figure 7-17: Recurrence Relationship for I(x)

x Kn 1– x() Kn 1+ x()–() 2nKn x()+ 0=
Determining Bessel Function Accuracy What’s New in IDL 5.5

Chapter 7: New Examples 397
XTITLE = 'x', YTITLE = 'f(x)', $
TITLE = 'Modified Bessel Functions of the Second Kind'

OPLOT, x, BESELK(x, 1), LINESTYLE = 1
OPLOT, x, BESELK(x, 2), LINESTYLE = 2
OPLOT, x, BESELK(x, 3), LINESTYLE = 3
OPLOT, x, BESELK(x, 4), LINESTYLE = 4
OPLOT, x, BESELK(x, 5), LINESTYLE = 5
OPLOT, x, BESELK(x, 6), LINESTYLE = 0
OPLOT, x, BESELK(x, 7), LINESTYLE = 1

; Initialize display window for recurrence relations.
WINDOW, 1, XSIZE = 896, YSIZE = 512, $

TITLE = 'Testing the Recurrence Relations'
!P.MULTI = [0, 2, 3, 0, 0] ; for multiple displays

; Initialize title variable.
nString = ['0', '1', '2', '3', '4', '5', '6', '7']

; Display recurrence relationships for order 1 to 6.
; NOTE: the results of these relationships should be
; very close to zero.
FOR n = 1, 6 DO BEGIN

equation = x*(BESELK(x, (n - 1)) - $
BESELK(x, (n + 1))) + 2.*FLOAT(n)*BESELK(x, n)

PLOT, x, equation, /XSTYLE, /YSTYLE, CHARSIZE = 1.5, $
TITLE = 'n = ' + nString[n] + ': Orders of ' + $
nString[n - 1] + ', ' + nString[n] + ', and ' + $
nString[n + 1]

PRINT, 'n = ' + nString[n] + ': '
PRINT, 'minimum = ', MIN(equation)
PRINT, 'maximum = ', MAX(equation)

ENDFOR

; Return display window back to its default setting, one
; display per window.
!P.MULTI = 0

END
What’s New in IDL 5.5 Determining Bessel Function Accuracy

398 Chapter 7: New Examples
The results for this example are shown in the following figure.

Figure 7-18: Recurrence Relationship for K(x)
Determining Bessel Function Accuracy What’s New in IDL 5.5

Index

Symbols
.sav file

creating, 363, 364–365
restoring, 363, 365

.sid image files, 181

A
ActiveX, IDL hosting

COM uses, 139
creating control, 150
destroying control, 151
dispatch, 150
embedded control, 138, 152
event propagation, 156
instantiating, 149
overview, 40

adding software functionality. See COM ob-
jects

alpha blending, 328
alpha channel, 328
animating

isosurfaces, 57
volumes, 57

array
creation routines, 135
manipulation routines, 136

B
backprojection

Hough, 374
Radon, 376
What’s New in IDL 5.5 399

400
base widget shortcut menu
adding, 160
creating, 158

BESELI function, 394
BESELJ function, 390
BESELK function, 396
BESELY function, 392
Bessel functions

first kind, 390
modified first kind, 390, 394
modified second kind, 390, 396
recurrence relationship, 390–392, 394–396
second kind, 390–392

beta function, 387
binary, unary operators, 134
building software components. See COM ob-

jects
byte swapping routines, 136

C
centering image objects, 325
clipboard object, 351, 355
clipping meshes, 333
COM objects

ActiveX, IDL hosting, 139
class and program identifiers, 140, 149
creating, 176
example, 145
IDispatch management, 142
IDLcomIDispatch object class, 176
naming conventions, 142, 149
naming scheme, 140
overview, 138
pointers, 145
reference counting, 144
referencing other COM objects, 145
uses, 138

component object model. See COM objects
computation speed. See multi-threading
connectivity list, 332–333

context sensitive menu. See shortcut menus
convex hulls, 276
coordinate conversion, 325
copying to a clipboard, 351
CPU procedure, 194
creating a .sav file, 363, 364–365

D
data type conversion routines, 135
decimating a mesh, 336
DEFINE_MSGBLK procedure, 197
DEFINE_MSGBLK_FROM_FILE procedure,

200
deleting a region of interest, 315
display capture in Direct Graphics

PseudoColor, 359
TrueColor, 359–360

draw widget shortcut menu, 162

E
efficiency improvements. See multi-threading
encapsulated PostScript file, 351, 355
Enhanced Metafile, 351, 355
ERF function, 203
ERFC function, 204
ERFCX function, 205
event handler, 368

F
FFT

inverse transform, 379
transform, 379

file status, 32
FILE_INFO function, 206
FILE_SEARCH function, 210
format code

A, 31
Index What’s New in IDL 5.5

401
C(), 31
column moves, 31
D, 31
E, 31
F, 31
G, 31
I, 31
O, 31
open parenthesis, 31
T, 31
TL, 31
TR, 31
X, 31
Z, 31

freeing
heap variables, 264
pointers, 151, 264
resources, 151

G
gamma function, 387–388
generating tetrahedral meshes, 13
GRID_INPUT procedure, 224
GRIDDATA function, 228
gridding irregular intervals, 385

H
HDF_VD_ATTRFIND function, 253
HDF_VD_ATTRINFO procedure, 254
HDF_VD_ATTRSET procedure, 256
HDF_VD_ISATTR function, 262
HDF_VD_NATTRS function, 263
heap variables

freeing, 264
HEAP_FREE procedure, 264
high resolution textures, 12
histogram view of ROI, 311

hosting ActiveX in IDL. See ActiveX, IDL
hosting

Hough
backprojection, 374
transform, 374

I
IBETA function, 387
IDispatch

COM Class ID, 140
COM Program ID, 140
get and set properties, 144
interface, 138
managing COM objects, 142
naming conventions, 142
pointer handling, 145

IDLcomIDispatch
GetProperty method, 179
Init method, 177
object class, 176
SetProperty method, 180

IDLffMrSID
Cleanup method, 182
GetDimsAtLevel method, 183
GetImageData method, 185
GetProperty method, 188
Init method, 191
object class, 181

IGAMMA function, 388
image object

centering, 325
transparent, 328

image processing routines, 135
incomplete beta function, 387
incomplete gamma function, 387–388
indexed image, 359
integration

double, 381
triple, 381–382
What’s New in IDL 5.5 Index

402
interpolation
dependent variable to volume, 271
scattered data to regular, 228

INTERVAL_VOLUME procedure, 267
iteration controls, 388

L
limit relaxed

32-bit IDL, 27
A format code, 31
format code column, 31
format codes repetition count, 31
formatted I/O, 31

linear programming solutions, 287
list widget shortcut menu, 166

M
mapping images onto geometry, 322
mathematical routines, 134
merging meshes, 339
MESH_OBJ procedure, 336, 345
meshes

advanced example, 345
clipping, 333
decimating, 336
merging, 339
smoothing, 342

message block support, 28
modified Bessel functions

See also Bessel functions.
first kind, 390, 394
second kind, 390, 396

MrSID image files
deleting, 182
dimensions, 183
extracting data, 185
loading, 181
query, 181

query properties, 188
multi-threading

array creation routines, 135
array manipulation routines, 136
byte swapping support, 136
calculation speed, 126
controlling with CPU procedure, 129
data type conversion routines, 135
disabling with CPU procedure, 129
image processing routines, 135
math routines, 134
operators, 134
overriding default use, 126, 133
overview, 20

N
naming conventions. See COM objects

O
object class enhancements, 60
obsolete routines, 122
obsoleted features, 122
OLE/COM Object Viewer, 141
optimal feasible vector, 287
overriding multi-threading, 128, 133

P
path separation delimiters, 270
path specification, 210
PATH_SEP function, 270
performance enhancements, 20
PICT file, 351, 355
platforms supported, 124
pointers

COM object use, 145
freeing, 264
Index What’s New in IDL 5.5

403
polygon object
See also meshes.
advanced example, 345
clipping meshes, 333
decimating meshes, 336
displaying meshes, 332
merging meshes, 339
smoothing meshes, 342

pop-up menu. See shortcut menus
PostScript file, 351, 355
printer object, 351, 353, 357
processing speed. See multi-threading
PseudoColor, 359

Q
QGRID3 function, 271
QHULL procedure, 276
QROMB function, 381
QROMO function, 381
QSIMP function, 381
QUERY_MRSID function, 279

R
Radon

backprojection, 376
transform, 376

READ_MRSID function, 281
REAL_PART function, 283
recursive file searching, 210
reference counting methodology, 144
referencing COM objects, 145
region growing

properties dialog, 312
REGION_GROW overview, 14

region of interest (ROI). See ROI
REGION_GROW function, 284
relaxed limits, 27–31
RESOLVE_ALL procedure, 366

resources
freeing, 151
system, 126

RESTORE procedure, 366
restoring a .sav file, 363, 365
retrieving image dimensions, 183
RGB image, 359
ROI

deleting, 315
geometric and statistical data, 303
growing, 14, 312
histogram view, 311
using XROI procedure, 303

routines enhanced, 72
routines obsoleted, 122

S
.sav file

creating, 363, 364–365
restoring, 363, 365

SAVE procedure, 365–366
searching subdirectories, 210
selectable list menu, 166
shortcut menus

creating a base, 160
creating a draw widget, 162
creating a text widget, 170
deleting an ROI, 315
displaying, 159
events, 158
selectable lists, 166

.sid image files, 181
SIMPLEX function, 287
simplex method, 287
smoothing meshes, 342
string length limits, 27
supported platforms, 124
system variable enhancements, 121
What’s New in IDL 5.5 Index

404
T
table widget, 368
tetrahedral meshes, 13
text widget shortcut menu, 170
texture mapping, 322
thread pool. See multi-threading
tolerance, 387
transforms

FFT, 379
Hough, 374
inverse FFT, 379
Radon, 376

transparency
alpha channel, 328
image object, 328

TRIANGULATE function, 333, 385
triangulation

Delaunay, 276
scattered data points, 271

TRIGRID function, 385
TrueColor, 359–360
TVRD function, 359–360
type conversion routines, 135

V
vertices, 332, 336, 339, 342
viewplane rectangle, 325

Voronoi diagrams, 276

W
WIDGET_ACTIVEX function, 291
WIDGET_DISPLAYCONTEXTMENU func-

tion, 298
WIDGET_TABLE, 368
widgets

aligning keywords, 292
callbacks, 293, 294
sensitizing and de-sensitizing, 295

X
XOBJVIEW_ROTATE procedure, 300
XOBJVIEW_WRITE_IMAGE procedure, 302
XROI

growing a region, 312
importing images, 310
procedure, 303
using, 309

Z
Z-buffer, 359
Index What’s New in IDL 5.5

	Online Guide
	Contents
	Overview of New Features in IDL 5.5
	Visualization Enhancements
	High-Resolution Textures Supported by IDLgrSurface
	New Enhancements to XOBJVIEW
	New XOBJVIEW_ROTATE Procedure
	New XOBJVIEW_WRITE_IMAGE Procedure
	New Procedure for Generating Tetrahedral Data
	New Support for Region Growing
	New XROI Functionality
	New TrueColor Support for Any Depth on UNIX
	How IDL Selects a Visual Class
	Setting a Visual Class with the DEVICE Routine
	Setting a Default Visual Class in Your .Xdefaults File
	How Color is Interpreted for a TrueColor Visual

	New Support for Resolving Stitching Artifacts in Object Graphics
	New QUIET Keyword for RECON3
	New Keyword for Smoother Results Using WARP_TRI

	Analysis Enhancements
	The IDL Thread Pool and Multi-Threading
	What is Multi-Threading?
	Platform Support for Multi-Threading

	New Functionality for Gridding and Interpolation
	New Examples Using the AUTO_GLUE Keyword to CALL_EXTERNAL
	New REAL_PART Function
	New ERF, ERFC, and ERFCX Functions
	Support for SIMPLEX Method for Linear Programming
	BESELI, BESELJ, BESELK and BESELY Functionality Improvements
	New NaN Support for SMOOTH and CONVOL
	New LNORM Keyword for COND and NORM
	New DOUBLE Keyword for POLY_AREA
	New STATUS Keyword for POLYWARP Support
	New ACOS, ASIN, ATAN Support for Complex Input
	ATAN Function Support

	New Minimum/Maximum Operator Support for Complex Data
	New SMOOTH Function Multidimensional Width Support
	Example

	New Dimension-specific Transforming for FFT
	New Dimension-setting functionality for Arrays
	Source Code for CLUSTER, CLUST_WTS, EIGENQL, PCOMP
	New Histogram Cumulative Probability Distribution Functionality

	Language Enhancements
	Maximum String Length Limit Increased for 32-Bit IDL
	New MESSAGE Keywords and Message Block Support
	Example Using MESSAGE (Pre-IDL 5.5)
	New Message Block Support in IDL 5.5
	DEFINE_MSGBLK Example
	Example Using DEFINE_MSGBLK_FROM_FILE

	Relaxed Formatted Input/Output Record Length Limits
	New and Enhanced File Handling Routines
	New Functionality Frees Dynamic Resources
	New Ability to Check for Keyword Inheritance Errors
	Enhancements to IDL Path Expansion
	New Support for REFORM-Style Dimension Array
	New DOUBLE Keyword for COMPLEX
	New CENTER Keyword for CONGRID
	New SIGN Keyword for FINITE
	Improvements to Files Created with SAVE
	Improvements to UNIX Filename Expansion
	Pre-IDL 4.0 C Internals Compatibility Library Removed

	User Interface Toolkit Enhancements
	New COM and ActiveX Functionality for IDL
	New Shortcut Menu Widget
	Emulating System Colors in Application Widgets
	The WIDGET_SYSTEM_COLORS Structure

	New Functionality to Specify Slider Increments in IDL Widgets

	File Access Enhancements
	New PATH_SEP Function
	Enhanced TIFF Support
	Enhanced Support for 1-bit and 4-bit TIFF Images
	New Returned Information for TIFF Queries
	Improved TIFF Orientation Functionality
	New Unit-setting Functionality for WRITE_TIFF

	New Support for MrSID

	Development Environment Enhancements
	Improved Project Exporting

	Scientific Data Formats Enhancements
	HDF-EOS Data Output Enhancements
	New HDF Vdata Attribute Routines

	IDL ActiveX Control Enhancements
	Why Was a New Version of the Control Created?
	What Must You Change to Take Advantage of the Control?
	What About the Previous ActiveX Control?
	Why Should You Upgrade?

	IDL DataMiner Enhancements
	Platform Specific Information

	Documentation Enhancements
	Enhanced IDL Utilities
	Enhanced IDL Utilities
	New Keywords/Arguments to Existing IDL Utilities
	XOBJVIEW
	XROI

	New and Enhanced IDL Objects
	New Object Classes
	IDL Object Method Enhancements

	New and Enhanced IDL Routines
	New IDL Routines
	IDL Routine Enhancements
	Updates to Executive Commands

	New and Updated System Variables
	Features Obsoleted
	Obsoleted Routines
	Obsoleted Keywords and Arguments

	Platforms Supported in this Release

	Multi-Threading in IDL
	The IDL Thread Pool
	Benefits of the IDL Thread Pool
	Possible Drawbacks to the Use of the IDL Thread Pool

	Controlling the Thread Pool in IDL
	Using the Initial Settings of the Thread Pool
	Programatically Controlling the Settings of the Thread Pool
	Controlling the Thread Pool Settings for a Session or Group of Computations
	Controlling the Thread Pool Settings for a Specific Computation

	Disabling the Thread Pool

	Routines Supporting the Thread Pool
	Binary and Unary Operators:
	Mathematical Routines:
	Image Processing Routines:
	Array Creation Routines:
	Non-string Data Type Conversion Routines:
	Array Manipulation Routines:
	Programming and IDL Control Routines:

	Using COM Objects in�IDL
	Introduction to IDL COM Objects
	Skills Required to Use COM Objects
	ActiveX

	IDL COM Naming Schemes
	About Obtaining COM Class Identifiers

	Using IDL IDispatch COM Objects
	IDL IDispatch Naming Schemes
	IDispatch Object Creation
	IDispatch Method Dispatching
	IDispatch COM Object Destruction
	IDispatch Property Management
	COM Objects Returning IDispatch Pointers to Other Objects
	Example: Creating an IDispatch COM Object in IDL

	Using ActiveX Controls in IDL
	ActiveX-based COM Naming Schemes
	ActiveX Control Creation
	ActiveX Control Access and Dispatching
	Freeing Dynamic Resources
	ActiveX Control Destruction
	Example: Embedding an ActiveX Control in IDL
	Example: Creating an Excel Spreadsheet in IDL

	Access to ActiveX Methods and Properties
	Event Propagation

	Using the Shortcut Menu Widget
	Introduction to the Shortcut Menu Widget
	Using WIDGET_DISPLAYCONTEXTMENU

	Creating a Base Widget Shortcut Menu
	Creating a Draw Widget Shortcut Menu
	Creating a List Widget Shortcut Menu
	Creating a Text Widget Shortcut Menu

	New Objects
	IDLcomIDispatch
	IDLcomIDispatch::Init
	IDLcomIDispatch::GetProperty
	IDLcomIDispatch::SetProperty

	IDLffMrSID
	IDLffMrSID::Cleanup
	IDLffMrSID::GetDimsAtLevel
	Level

	IDLffMrSID::GetImageData
	LEVEL
	SUB_RECT

	IDLffMrSID::GetProperty
	CHANNELS
	DIMENSIONS
	LEVELS
	PIXEL_TYPE
	TYPE
	GEO_VALID
	GEO_PROJTYPE
	GEO_ORIGIN
	GEO_RESOLUTION

	IDLffMrSID::Init
	Filename
	QUIET

	New IDL Routines
	CPU
	DEFINE_MSGBLK
	DEFINE_MSGBLK_FROM_FILE
	ERF
	ERFC
	ERFCX
	FILE_INFO
	FILE_SEARCH
	GRID_INPUT
	GRIDDATA
	HDF_VD_ATTRFIND
	HDF_VD_ATTRINFO
	HDF_VD_ATTRSET
	HDF_VD_ISATTR
	HDF_VD_NATTRS
	HEAP_FREE
	INTERVAL_VOLUME
	PATH_SEP
	QGRID3
	QHULL
	QUERY_MRSID
	READ_MRSID
	REAL_PART
	REGION_GROW
	SIMPLEX
	WIDGET_ACTIVEX
	WIDGET_DISPLAYCONTEXTMENU
	XOBJVIEW_ROTATE
	XOBJVIEW_WRITE_IMAGE
	XROI

	New Examples
	Overview of New Examples
	Mapping an Image Onto a Surface
	Centering an Image Object
	Alpha Blending: Creating a Transparent Image Object
	Working with Mesh Objects and Routines
	Clipping a Mesh
	Decimating a Mesh
	Merging Meshes
	Smoothing a Mesh
	Advanced Meshing: Combining Meshing Routines

	Copying and Printing Objects
	Copying a Plot Display to the Clipboard
	Printing a Plot Display
	Copying an Image Display to the Clipboard
	Printing an Image Display

	Capturing IDL Direct Graphics Displays
	Capturing Direct Graphics Displays on PseudoColor Devices
	Capturing Direct Graphics Displays on TrueColor Devices

	Creating and Restoring .sav Files
	Customizing and Saving an ASCII Template
	Saving and Restoring the XROI Utility and Image ROI Data

	Handling Table Widgets in GUIs
	Finding Straight Lines in Images
	Color Density Contrasting in an Image
	Removing Noise from an Image with FFT
	Using Double and Triple Integration
	Integrating to Determine the Volume Under a Surface (Double Integration)
	Integrating to Determine the Mass of a Volume (Triple Integration)

	Obtaining Irregular Grid Intervals
	Calculating Incomplete Beta and Gamma Functions
	Working With Tolerances in the Incomplete Beta Function
	Working With Iteration Controls in the Incomplete Gamma Function

	Determining Bessel Function Accuracy
	Analyzing the Bessel Function of the First Kind
	Analyzing the Bessel Function of the Second Kind
	Analyzing the Modified Bessel Function of the First Kind
	Analyzing the Modified Bessel Function of the Second Kind

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Z

